Convergence of Petviashvili’s Iteration Method

Peter Kauf

January 23, 2007
Table of Contents

Setting, Iteration, Spectrum
 Equation, Discussion of Iteration Method

Convergence Theorem, Proof Structure
 Statement, Contraction theorem, necessary auxiliary results
 \[\|A'(\hat{\Phi})\| < 1 \]
 Convergence of linearized Iteration Operator

Spectral Lemmata
 Final Ingredients for Proof of Convergence

Summary
 Overview, References

Numbering consistent with [PS]!
Outline

Setting, Iteration, Spectrum
 Equation, Discussion of Iteration Method

Convergence Theorem, Proof Structure
 Statement, Contraction theorem, necessary auxiliary results

\[\|A'(\hat{\Phi})\| < 1 \]
 Convergence of linearized Iteration Operator

Spectral Lemmata
 Final Ingredients for Proof of Convergence

Summary
 Overview, References

Peter Kauf
Convergence of Petviashvili's Iteration Method
Scalar, 1-D Wave Equation with Power Nonlinearity

\[u_t - (\mathcal{L} u)_x + pu^{p-1}u_x = 0, \quad (1.1) \]

- \(u : \mathbb{R} \times \mathbb{R}_+ \rightarrow \mathbb{R}, \ p > 1 \)
- \(\mathcal{L} : \) linear, self-adjoint (\(\langle u, \mathcal{L} v \rangle = \langle \mathcal{L} u, v \rangle \)), positive (\(\langle u, \mathcal{L} u \rangle \geq 0 \)) pseudodifferential operator in \(x \) of order \(m \).
- \(\langle f, g \rangle = \int_{-\infty}^{\infty} \bar{f}(x)g(x)dx \)
- Fourier: \(u(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{u}(k)e^{ikx}dk, \ \hat{u}(k) = \int_{-\infty}^{\infty} u(x)e^{-ikx}dx \)

Stationary bound state solution \(u(x, t) = \Phi(x - ct) \) leads to boundary value problem (\(\int \left[-c\Phi_x - (\mathcal{L} \Phi)_x + p\Phi^{p-1}\Phi_x \right] dx \))

\[
(1.3) \begin{cases}
 c\Phi + \mathcal{L} \Phi = \Phi^p \\
 \lim_{|x| \to \infty} \Phi(x) = 0
\end{cases}
\]

or \((1.5) [c + v(k)] \hat{\Phi}(k) = \hat{\Phi}^p(k) \), \(v(k) \geq 0 \) an \(m \)th order polynomial in \(|k| \)
Assumption 1.1

\[p > 1, \, \nu(k) \geq 0, \, c > 0. \exists \text{ real analytical solution to 1 in} \]
\[X = L^2(\mathbb{R}) \cap L^{p+1}(\mathbb{R}) \cap H^{m/2}(\mathbb{R}) \]

Approximate \(\hat{\Phi} \) through \(\hat{u}_{n+1}(k) = \frac{u_p^n(k)}{c + \nu(k)} \longrightarrow \text{usually divergent} \)

\[
\hat{u}_{n+1}(k) = M_n^\gamma \frac{u_p^n(k)}{c + \nu(k)} \quad \text{(1.8)}
\]

\[
M_n = \frac{\int_{-\infty}^{\infty} [c + \nu(k)] \hat{u}_n(k)^2 dk}{\int_{-\infty}^{\infty} \hat{u}_n(k) u_p^n(k) dk} \quad \text{(1.9)}
\]

Lemma 1.2: Fix points for (1.8), (1.9) correspond to bound states \(\hat{\Phi}(k) \) of (1.5) for \(\gamma \neq 1 + 2n, \, n \in \mathbb{Z} \).
Spectrum, Assumption 2.1

Define Operator to (1.1): $\mathcal{H} = c + \mathcal{L} - p \Phi^{p-1}(x)$ \hspace{2cm} (1.10)

- selfadj. in $L^2(\mathbb{R}) \rightarrow$ real eigenval., orth. spectr. decomp.
- Null space contains at least $\Phi'(x)$.
- cont. spectrum positive, bounded away from zero (ass. 1.1)
- negative spectrum not empty

$$\mathcal{H} \Phi = (1 - p) \Phi^p$$

$$\langle \mathcal{H} \Phi, \Phi \rangle = -(p - 1) \langle \Phi^p, \Phi \rangle = -\frac{p - 1}{2\pi} \langle \hat{\Phi}, \hat{\Phi}^p \rangle$$

$$= -\frac{p - 1}{2\pi} \langle [c + \nu(.)] \hat{\Phi}, \hat{\Phi} \rangle < 0$$
Spectrum, Assumption 2.1

Define Operator to (1.1): \(\mathcal{H} = c + \mathcal{L} - p\Phi^{p-1}(x) \) (1.11)

- selfadj. in \(L^2(\mathbb{R}) \) \(\longrightarrow \) real eigenval., orth. spectr. decomp.
- Null space contains at least \(\Phi'(x) \).
- cont. spectrum positive, bounded away from zero (ass. 1.1)
- negative spectrum not empty

Assumption 2.1 on Spectrum of \(\mathcal{H} \):

- \(\sigma^{\text{discr}}_{L^2}(\mathcal{H}) \) for eigenvalues \(< c\)
- \(\sigma^{\text{cont}}_{L^2}(\mathcal{H}) \) for eigenvalues \(\geq c \)
- Nullspace is one-dimensional
- dim. neg. space \(n(\mathcal{H}) \geq 1 \)
Outline

Setting, Iteration, Spectrum
 Equation, Discussion of Iteration Method

Convergence Theorem, Proof Structure
 Statement, Contraction theorem, necessary auxiliary results
 $\|A'(\hat{\Phi})\| < 1$
 Convergence of linearized Iteration Operator

Spectral Lemmata
 Final Ingredients for Proof of Convergence

Summary
 Overview, References
Convergence Theorem

Theorem 2.8

Let $\hat{\Phi}(k)$ solution to (1.5), assumptions 1.1 and 2.1. Petviashvili Iteration (1.8), (1.9) converges to $\hat{\Phi}(k)$ in (small) neighbourhood of $\hat{\Phi}(k)$ if:

1. $1 < \gamma < \frac{p+1}{p-1}$
2. $n(\mathcal{H}) = 1$
3. Either $\Phi^{p-1}(x) \geq 0$ or $\lambda_{\text{max}}((c + \mathcal{L})^{-1}\mathcal{H}) < 2$ (ass. 2.7)

"If any of the conditions are not met, the Petviashvili iteration diverges from $\hat{\Phi}(k)$".
Fréchet Derivative, Contraction Principle

Fréchet Derivative

Let \mathcal{B}, \mathcal{C} be Banach spaces, $D \subset \mathcal{B}$ open, mapping $A : \mathcal{B} \to \mathcal{C}$. A is Fréchet differentiable in $g \in D$ if there exists a linear operator $L : \mathcal{B} \to \mathcal{C}$ such that

$$\lim_{\|h\| \to 0} \frac{\|A(g + h) - Ag - Lh\|}{\|h\|} = 0$$

Fixed Point Theorem ([HP], Lemma 4.4.8)

Let \mathcal{B} be a Banach space, $D \subset \mathcal{B}$ open, assume that $A : D \to \mathcal{B}$ has a fixed point $\bar{f} \in D$, and let A be Fréchet differentiable in \bar{f} ($A'(\bar{f})$).

For all $0 < \varepsilon < 1 - \|A'(\bar{f})\|$, there exists an open set $S(\bar{f}, \delta)$ such that if $f_0 \in S(\bar{f}, \delta)$:

- The iterates $f_n := A f_{n-1} \in S(\bar{f}, \delta)$
- $\lim f_n = f$
- $\|f_n - \bar{f}\| \leq (\|A'(f)\| + \varepsilon)^n \|f_0 - f\|$

Peter Kauf

Convergence of Petviashvili’s Iteration Method
Proof of Convergence

Let A the iteration operator (1.8), (1.9): $\hat{u}_{n+1} = A(\hat{u}_n)$ in $X(\mathbb{R})$.

1. $A'(\hat{u}_n)$ continuous in $S(\Phi, \delta_c)$ (proof: [PS], Proposition 3.4 and additional calculation)

2. $\|A'(\Phi)\| < 1$, i.e. spectral radius of $A'(\Phi)$ is < 1.

By Continuity of $A'(\Phi)$, we have $\forall \ 0 < \varepsilon < 1 - \|A'(\Phi)\|$

$\exists S(\Phi, \delta(\varepsilon)) \subset X(\mathbb{R})$ such that $q = \sup_{\hat{u}_n \in S} \|A'(\hat{u}_n)\| < 1.$

By [HP], Lemma 4.4.7: $\forall \ \hat{f}, \hat{g} \in S: \|A(\hat{f}) - A(\hat{g})\| \leq q\|\hat{f} - \hat{g}\|.$

The contraction mapping theorem ([HP] theorem 4.3.4) assures that $A(\hat{u}_n)$ has unique, asymptotically stable fixed point in $S(\Phi, \delta)$. By the fixed Point theorem we get that

$$\|\hat{u}_n - \Phi\| \leq \left(\|A'(\Phi)\| + \varepsilon\right)^n \|\hat{u}_0 - \Phi\|.$$

q.e.d. theorem 2.8
Outline

Setting, Iteration, Spectrum
 Equation, Discussion of Iteration Method

Convergence Theorem, Proof Structure
 Statement, Contraction theorem, necessary auxiliary results

\[\|A'(\hat{\Phi})\| < 1 \]
 Convergence of linearized Iteration Operator

Spectral Lemmata
 Final Ingredients for Proof of Convergence

Summary
 Overview, References
Proposition 3.1

Proposition 3.1 \(A'(\hat{\Phi}) \) (i.e. Operator (1.8), (1.9) linearized at \(\hat{\Phi}(k) \)) has spectral radius smaller than one (\(\|A'(\hat{\Phi})\| < 1 \)), if

- \(1 < \gamma < \frac{p+1}{p-1} \)
- \(n(\mathcal{H}) = 1 \)
- assumptions 2.1 and 2.7 are met.

Proof: Define \(\hat{u}_0(k) := \hat{\Phi}(k) + \hat{w}_0(k) \), \(\hat{w}_0(k) \) small and \(\langle \Phi', w_0 \rangle = 0 \). Generate \(\hat{w}_n(k) = \hat{u}_n(k) - \Phi(k) \) by linearized operators:

\[
\hat{w}_{n+1}(k) = \gamma m_n \hat{\Phi}(k) + p \frac{\Phi^{p-1} \ast \hat{w}_n(k)}{c + \nu(k)} \tag{3.1}
\]

\[
m_n = (1 - p) \frac{\int_{-\infty}^{\infty} \hat{\Phi}^p(k) \hat{w}_n(k) dk}{\int_{-\infty}^{\infty} \hat{\Phi}^p(k) \hat{\Phi}(k) dk} = M_n - 1 \tag{3.2}
\]

Proof: calculation, done in handout.
I Proof of Proposition 3.1

Define space $X_p := \{ U \in L^2 : \langle \Phi^p, U \rangle = 0 \}$.
We decompose $\hat{w}_n(k) = \hat{u}_n(k) - \hat{\Phi}(k)$ into

$$w_n = a_n \Phi(x) + q_n(x), \quad q_n(x) \in X_p \quad (3.3)$$

Immediately (3.2, 3.3): $m_n = (1 - p)a_n$ and by short calculations (see handout):

$$m_{n+1} = [p - \gamma(p - 1)]m_n \quad (3.4)$$
$$q_{n+1}(x) = q_n(x) - (c + L)^{-1}H q_n(x) \quad (3.5)$$

Want to prove that $w_n \xrightarrow{n \to \infty} 0$ to conclude that spectral radius of (3.1), (3.2) less than 1.

(1) $m_n \to 0$ if $1 < \gamma < \frac{p+1}{p-1}$. Superlinear: $\gamma = \frac{p}{p-1}$.
II Proof of Proposition 3.1

(2) \(q_n \to 0 \):
Decompose \(q_n \) into EF of \((c + L)^{-1} \mathcal{H}\) (see later) in \(X_p \). We need two Lemmata (proven later):

Lemma 2.4
\[\sigma \left((c + L)^{-1} \mathcal{H}\right) \text{ in } X_p(\mathbb{R}) \text{ has } n(\mathcal{H}) - 1 \text{ negative EV.} \]

Lemma 2.5
Positive spectrum of \((c + L)^{-1} \mathcal{H}\) in \(X_p(\mathbb{R})\):

1. Infinitely many discrete EV. \(0 < \lambda < 1 \) (accumulating to \(1^- \)).
2. If \(\forall x \in \mathbb{R}: \Phi_p^{-1}(x) \geq 0 \): no EV. > 1.
3. If \(\exists x_0 \in \mathbb{R}: \Phi_p^{-1}(x_0) < 0 \), we also have infinitely many discrete EV. in \(1 < \lambda < \lambda_{\text{max}} \) (accumulating to \(1^+ \)), and \(\lambda_{\text{max}} < 1 + \frac{p}{c} \left| \min_{x \in \mathbb{R}} \Phi_p^{-1}(x) \right| < \infty \).
We had \(q_{n+1}(x) = q_n(x) - (c + \mathcal{L})^{-1} \mathcal{H} q_n(x) \) (3.5)

\(\Phi' \) is EF of \((c + \mathcal{L})^{-1} \mathcal{H}\) to EV 0, but \(\langle \Phi', q_0 \rangle = 0 \) (\(\langle w_0, \Phi' \rangle = 0 \), use \(\langle \Phi, \Phi' \rangle = 0 \)) implies \(\langle \Phi', q_n \rangle = 0 \) by induction (use 3.5).

\[
q_n(x) = \sum_{k=1}^{n(\mathcal{H})-1} \alpha_k^{(n)} U_k(x) + \sum_{0<\lambda_k<1} \beta_k^{(n)} U_k(x) + \sum_{1<\lambda_k \leq \lambda_{\text{max}}} \gamma_k^{(n)} U_k(x) \tag{3.6}
\]

\[
\alpha_k^{(n+1)} = (1 + |\lambda_k|) \alpha_k^{(n)} \quad \lambda_k < 0 \tag{3.7}
\]
\[
\beta_k^{(n+1)} = (1 - \lambda_k) \beta_k^{(n)} \quad 0 < \lambda_k < 1 \tag{3.8}
\]
\[
\gamma_k^{(n+1)} = (1 - \lambda_k) \gamma_k^{(n)} \quad 1 < \lambda_k \leq \lambda_{\text{max}} \tag{3.9}
\]

For (max. linear !) convergence to 0 we need \(n(\mathcal{H}) = 1 \) and assumption 2.7.
IV Proof of Proposition 3.1

Remark: Add $\sum \lambda_j \cdot \delta^{(n)}_j \cdot U_j(x)$ to q_n:

- If w_0 not orthogonal to Φ' \rightarrow Iteration of w_n converges to $c_0 \Phi'$. translation in x of $\Phi(x)$ to $\Phi(x + c_0)$, since we have linearized operator (first order correction!).

- $\text{Ker}(H) > 1$, non-orthogonal w_0: Not necessarily convergence to Φ', bifurcation. We need assumption 2.1.

q.e.d Proposition 3.1
Outline

Setting, Iteration, Spectrum
 Equation, Discussion of Iteration Method

Convergence Theorem, Proof Structure
 Statement, Contraction theorem, necessary auxiliary results

\[\|A'(\hat{\Phi})\| < 1 \]
 Convergence of linearized Iteration Operator

Spectral Lemmata
 Final Ingredients for Proof of Convergence

Summary
 Overview, References
Orthogonal Basis

\((c + \mathcal{L})^{-1} \mathcal{H}\) in \(L^2\): \(\mathcal{H}\) selfadjoint, \((c + \mathcal{L})\) positive \(\rightarrow\) EF of generalized EVP (2.4) \(\mathcal{H} U = \lambda (c + \mathcal{L}) U\) form an orthogonal basis of \(L^2\).

Lagrange Multipliers

Analysis II: Extremum of function \(f(x, y)\) under constraint \(\phi(x, y) = 0\) computed through 3 equations:

\[
\phi(x, y) = 0 \quad \nabla [f(x, y) + \lambda \phi(x, y)] = 0
\]

Generalize to infinite dimensions: looking for extremum of \(F[\psi]\) under constraint \(C[\psi] = 0\):

\[
C[\psi] = 0 \quad \frac{\delta}{\delta \psi} (F[\psi] + \nu C[\psi]) = 0
\]
Lemma 2.3

The negative space of \mathcal{H} in $X_p(\mathbb{R})$ has dimension $n(\mathcal{H}) - 1$.

Proof:

Need to find solutions (μ, ψ) to $(\mathcal{H} - \mu)\psi = 0$ under constraint that $\langle \Phi^p, \psi \rangle = 0$. Use Lagrange Multiplier ν to get

$$\langle \Phi^p, \psi \rangle = 0 \quad \frac{\delta}{\delta \psi} \left(\frac{1}{2} \langle (\mathcal{H} - \mu)\psi, \psi \rangle + \nu \langle \Phi^p, \psi \rangle \right) = 0$$

in other words: $\langle \Phi^p, \psi \rangle = 0 \quad \mathcal{H}\psi = \mu \psi - \nu \Phi^p(x)$ \hspace{1cm} (2.7)

Decompose ψ with L^2 EV-EF pairs (μ_k, u_k), $\mu \not\in \sigma_X(\mathcal{H})$:

$$\psi(x) = \nu \left[\sum_{\mu_k<0} \frac{\langle u_k, \Phi^p \rangle}{\mu - \mu_k} u_k(x) + \sum_{\mu_k>0} \frac{\langle u_k, \Phi^p \rangle}{\mu - \mu_k} u_k(x) \right]$$ \hspace{1cm} (2.8)
\[\psi(x) = \nu \left[\sum_{\mu_k < 0} \frac{\langle u_k, \Phi^p \rangle}{\mu - \mu_k} u_k(x) + \sum_{\mu_k > 0} \frac{\langle u_k, \Phi^p \rangle}{\mu - \mu_k} u_k(x) \right] \]

1. \(u_k \in X_p \): \(\mu_k \) is eigenvalue of \(\mathcal{H} \) over \(X_p \).
2. \(u_k \not\in X_p \): Still need to fulfill constraint equation:

\[F(\mu) = \frac{1}{\nu} \langle \Phi^p, \psi \rangle = \sum_{\mu_k < 0} \frac{\langle \Phi^p, u_k \rangle^2}{\mu - \mu_k} + \sum_{\mu_k > 0} \frac{\langle \Phi^p, u_k \rangle^2}{\mu - \mu_k} \overset{!}{=} 0 \quad (2.9) \]

Discussion of (2.9):
- Mon. decr. for \(\mu \leq 0 \) and \(\mu \neq \mu_k \), cont. in \((\mu_k - 1, \mu_k) \).
- Eigenvalues \(\mu_k \) of (1): \(F \) continuous at \(\mu = \mu_k \).
- \(F \overset{\mu \to -\infty}{\longrightarrow} 0^- \)
- \(F(0) = -\langle \Phi^p, \mathcal{H}^{-1} \Phi^p \rangle = \frac{1}{p-1} \langle \Phi^p, \Phi \rangle > 0 \)
- \(\pm \infty \) at \(\mu = \mu_k \) for \(u_k \not\in X_p \).

Have \(\#(2) = \# \text{poles} - 1 \). Get \(n(\mathcal{H}) - 1 \) negative EV over \(X_p \).

q.e.d. Lemma 2.3
Lemma 2.4

The spectrum of \((c + L)^{-1} \mathcal{H}\) in \(X_p(\mathbb{R})\) has \(n(\mathcal{H}) - 1\) negative eigenvalues \(\lambda\).

Proof:

\[n(\mathcal{H}) = \text{dimension of negative space of quadratic form } \langle U, \mathcal{H} U \rangle \]
\[\equiv n\left(\langle U, \mathcal{H} U \rangle \right), \quad U \in X_p(\mathbb{R}). \]

By generalized inertial theorem \(n\left(\langle U, \mathcal{H} U \rangle \right)\) is the same in any orth. basis of \(X_p\) diagonalizing \(\langle U, \mathcal{H} U \rangle\) wrt. positively weighted inner product:

- Orth. (wrt. \(\langle ., . \rangle\)) basis through \(\psi(x)\) as defined in (2.8).
- Orth. (wrt. \(\langle (c + L), ., . \rangle\)) basis out of generalized EVP (2.4).

q.e.d. Lemma 2.4
Lemma 2.5

Positive spectrum of \((c + \mathcal{L})^{-1} \mathcal{H}\) in \(X_p(\mathbb{R})\):

1. Infinitely many discrete EV. \(0 < \lambda < 1\) (accumulating to \(1^-\)).
2. If \(\forall x \in \mathbb{R}: \Phi^{-1}(x) \geq 0\): no EV. \(> 1\).
3. If \(\exists x_0 \in \mathbb{R}: \Phi^{-1}(x_0) < 0\), we also have infinitely many discrete EV. in \(1 < \lambda < \lambda_{\text{max}}\) (accumulating to \(1^+\)), and \(\lambda_{\text{max}} < 1 + \frac{p}{c} \left| \min_{x \in \mathbb{R}} \Phi^{-1}(x) \right| < \infty\).

Proof (bounds only):
Continuity / Discreteness of spectrum out of spectral theory.
Rewrite (2.4) as

\[
(c + \mathcal{L})U - \frac{p}{1 - \lambda} \Phi^{-1}(x) U = 0
\]
(2.12)
\[(c + \mathcal{L})U - \frac{p}{1-\lambda} \Phi^{p-1}(x)U = 0 \quad (2.12)\]

Multiply (2.12) by \(U\) and integrate:

\[
\lambda = 1 - p \frac{\langle U, \Phi^{p-1}U \rangle}{\langle U, (c + \mathcal{L})U \rangle} \quad (2.13)
\]

1. \(\forall x \Phi^{p-1}(x) \geq 0 \rightarrow \lambda < 1.\)
2. \(\exists x_0 : \Phi^{p-1}(x_0) < 0: \)

\[
\lambda = 1 - p \frac{\langle U, \Phi^{p-1}U \rangle}{\langle U, (c + \mathcal{L})U \rangle} < 1 + p \frac{\min_{x \in \mathbb{R}} \Phi^{p-1}(x)}{\langle U, (c + \mathcal{L})U \rangle} \langle U, U \rangle
\]

\[
< 1 + p \frac{\min_{x \in \mathbb{R}} \Phi^{p-1}(x)}{c \langle U, U \rangle} = 1 + \frac{p}{c} \min_{x \in \mathbb{R}} \Phi^{p-1}(x)
\]

q.e.d. Lemma 2.5
Outline

Setting, Iteration, Spectrum
Equation, Discussion of Iteration Method

Convergence Theorem, Proof Structure
Statement, Contraction theorem, necessary auxiliary results

\[\|A'(\hat{\Phi})\| < 1 \]
Convergence of linearized Iteration Operator

Spectral Lemmata
Final Ingredients for Proof of Convergence

Summary
Overview, References

Peter Kauf Convergence of Petviashvili's Iteration Method
Overview

Main Theorem 2.8
Let $\Phi(k)$ solution to (1.5), assumptions 1.1 (solution space) and 2.1 (Nullspace, bifurcation).
Petviashvili Iteration (1.8), (1.9) converges to $\Phi(k)$ in (small) neighbourhood (Continuity of linearized operator, Fixed Point Theorem) of $\Phi(k)$ if:

1. $1 < \gamma < \frac{p+1}{p-1}$ (Proposition 3.1, convergence of m_n)
2. $n(\mathcal{H}) = 1$ (Proposition 3.1, convergence of q_n)
3. assumption 2.7 is met. (Proposition 3.1, convergence of q_n)

"If any of the conditions are not met, the Petviashvili iteration diverges from $\Phi(k)$". (Bifurcation)

Remark: Generalization to more dimensions possible!
References
