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Whereas students’ conceptual understanding of variables and equations has often been 
investigated, little is known about students’ pathways to understanding the equivalence 
of expressions in generational instead of transformational activities. The case study re-
constructs two conceptual challenges that must be overcome on these pathways to con-
ceptual understanding of equivalence: (1) limited degrees of generality for variables 
and figures, and (2) operational versus relational perspectives on expressions. 

1. THEORETICAL AND EMPIRICAL BACKGROUND  
1.1  Understanding of equivalence as one meaning of the equal sign 
Students’ limited understanding of algebraic equality has often been problematized in 
empirical studies (e.g Kieran, 1981; McNeil & Alibali, 2005): Many students only in-
terpret the equal sign as a prompt to calculate the value, but algebraic thinking also ne-
cessitates the relational meaning as signifying symmetric structural relations between 
the left and right side of the equal sign. Whereas most research has focused on equations 
like 7x + 28 = x + 4, the relational interpretation of the equal sign is not only addressed 
(A) in algebraic equations, but also in three other important aspects: (B) arithmetical 
identities like 7 · (10+4) = 7·10 + 7·4, (C) equivalence of expressions like 7 · (x+4) = 
7x + 7·4, being generalized from (B), and (D) contextually bound identities like “Right 
triangles with hypotenuse c and legs a, b satisfy a²+b²=c²”  (cf. Prediger, 2010 for these 
aspects). Aspect (B) refers to arithmetic; (A), (C) and (D) to algebra, but with different 
meanings of the variable: Whereas variables in equations (A) serve as unknown to be 
solved, variables in aspects (C) and (D) serve as generalized numbers (Usiskin, 1988, p. 
17). Hence, generalization is crucial for understanding algebra. Building an understand-
ing of (A) und (B) has often been investigated, whereas (C) is considered more rarely 
(see next section). We defined the aspect of a relational understanding of equivalence 
(C) as the core subject of our design research project (cf. Prediger & Zwetzschler, 2013, 
for an overview).  
In this paper, we present a small descriptive study within a larger design research pro-
ject that focuses on the empirical specification of conceptual challenges that students 
encounter while developing conceptual understanding for the equivalence of expres-
sions. We investigate these individual conceptions in a learning arrangement that pro-
motes generational activities before transformational activities (Mason et al., 1985), as 
will be further explained in the next sections. 
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1.2 Three meanings for the equivalence of expressions  
In our approach, we generalize the operational-relational dichotomy from the equal 
sign to the equivalence of expressions: How should students understand equivalences 
like a · b + 2 · b · h/2 = b · (a+h)? In line with the wrong priority attributed to opera-
tional meanings of the equal sign (Kieran, 1981; McNeil & Alibali, 2005) is the fact that 
many students (and some curricula) think about equivalence of expressions only in 
terms of transformational activities. But how to ground these transformation rules in 
conceptual understanding? Mathematically, they can be derived from the basic arithmet-
ical laws (like commutativity and distributivity). But as Demby (1997) has pointed out, 
the general deduction from arithmetic to algebra is too complex and abstract for many 
learners (cf. Lee & Wheeler, 1989). That is why a learning arrangement that fosters the 
development of conceptual understanding of equivalence of expressions should first in-
volve its inclusion in generational activities, in which algebraic expressions are not only 
understood as a system of meaningless signs (being transformed according to arbitrary 
rules), but as pattern generalizers of arithmetical or geometrical pattern (Mason et al., 
1985, p. 46 ff.;). Within these activities, a relational understanding of the equivalence is 
achieved by comparing expressions with respect to equivalence (Kieran & Sfard, 1999) 
To sum up, three meanings of the equivalence of expressions are to be acquired; first, 
(a) and (b), than (c): two expressions are equivalent, if… 
(a) description equivalence: …, if they describe the same phenomenon (same geometric 

pattern, same situation, same function, …);  
(b) insertion equivalence: …, if they have the same value for all inserted numbers; 
(c) transformation equivalence: …, if they can be transformed into each other accord-

ing to the transformation rules.                                      (Malle, 1993; Prediger, 2009) 
For (a), the description equivalence, a relational perspective on expressions, Kieran & 
Sfard (1999) compare functions where the table representation immediately leads to (b), 
the insertion equivalence. As an alternative approach to that Pilet (2013, similar Solares 
& Kieran, 2012; Rittle-Johnson et al., 2011) focuses on an operational perspective (b) to 
build a conceptual understanding. Our Tasks in Figure 1 (Prediger et al., 2011) follow 
Mason et al. (2005) and Malle (1993) by establishing description equivalence for areas 
of varying geometric shapes, complemented by establishing insertion equivalence.  

(I) Which students calculate the same area?  
And which of the expressions calculate the area 
of the given geometric shape correctly? 

(II)  Insert different numbers for the variables. 
Check which of the expressions  
are equivalent.  

     
Fig. 1. Tasks (I) for experiencing description equivalence and (II) for insertion equivalence 



  
In this paper, we reconstruct critical moments in the learning pathways towards descrip-
tion and insertion equivalence; the later completion by transformation equivalence is not 
treated here. Generalizing the operational-relational dichotomy from the equal sign to 
expressions, we developed Task I to prioritize relational perspectives on algebraic ex-
pressions against purely operational perspectives. That means, we do not emphasize the 
activity of calculating values of expressions, but of formulating, interpreting and struc-
turing expressions while relating them to geometric shapes. However, our empirical 
analysis will show (in Section 3) that students still adopt other variants of operational 
perspective which produces conceptual challenges for their pathway to description 
equivalence.  
Additionally, we will show that the degree of generality is a relevant source of difficul-
ties: The insertion equivalence is quite natural for students for one specific insertion, 
namely the specific side lengths in the given geometric shapes; this interpretation of 
variables is known as “letter as object” (Küchemann, 1981). However, two expressions 
are only equivalent if they have the same value for all inserted numbers. We will show 
how a limited degree of generality (being transferred from geometry to algebra) forms a 
second conceptual challenge for understanding general insertion equivalence. 

2.  METHODOLOGY OF THE CASE STUDY 
This study is embedded in a larger design research project (Prediger & Zwetzschler, 
2013) that follows the methodology of Cobb & Gravemeijer (2006) with its dual aim of 
deepening the understanding of learning processes and designing learning arrangements. 
Therefore, it applies iterative cycles of (re)design and empirical investigation. Here, we 
concentrate on one step of empirical investigation with the following research ques-
tions: 
Q1 Which conceptions do students activate or develop in a learning arrangement desig-

ned to foster the conceptual understanding of description and insertion equivalence?  
Q2 How do the individual conceptions of variables, expressions and geometric shapes 

influence the learning pathways? Where do conceptual challenges appear?  
 
2.1  Data gathering in design experiments  
The tasks presented in Table 1 were part of the teaching-learning arrangement used for 
twelve design experiments in laboratory settings (Komorek & Duit, 2004). A teacher 
worked with 12 pairs of students in grade 7 to 9 in German comprehensive secondary 
schools), for three to five sessions of 45 to 60 minutes, the presented task lasted 20 to 50 
minutes. All experiments were videotaped and partly transcribed. 
2.2 Data analysis: Vergnaud’s analytical model of concepts- and theorems-in-action 
For the interpretative analysis of individual conceptions (research question Q1), we op-
erationalized “conceptions” by adapting the theoretical constructs concepts- and theo-
rems-in-action from Vergnaud’s theory of conceptual fields, as this theory offers “a 



  
fruitful and comprehensive framework for studying complex cognitive competences and 
activities and their development” (Vergnaud 1996, p. 219).  
The first step of our analytic procedure allows to reconstruct, for each of students’ visi-
ble activity or utterance, the underlying operational invariants: Theorems-in-action are 
defined as “proposition that is held to be true by the individual subject for a certain 
range of situation” (Vergnaud 1996, p. 225). For adapting Vergnaud’s construct to our 
specific needs, we symbolize theorems-in-action by <…> and always formulate the 
purpose and the means, e.g., <For calculating the value of an algebraic expression, I can 
replace the variable by the specific measures in the drawing>. These theorems-in-action 
are shaped by concepts-in-action, being defined as “categories (...) that enable the sub-
ject to cut the world into distinct (…) aspects and pick up the most adequate selection of 
information” (ibid.), e.g., ||Variable as unique hidden number||. In the second step of 
analysis, we categorize the reconstructed concepts-in-action according to their subject 
(variable, expression, connection between expression and geometric shape, …), their 
degree of generality and the underlying operational or relational perspective on the sub-
jects. This allows us to identify connections that could be interpreted as sources for typ-
ical conceptual challenges (research question Q2). 

3. RESULTS: RECONSTRUCTING CONCEPTUAL CHALLENGES  
Without being able to provide wide empirical evidence from the case studies, we pre-
sent short extracts of our analysis, show typical moments in the processes and discuss 
the connection between the reconstructed theorems- and concepts-in actions. 
3.1 Episode 1 of Paula & Daniel: Degree of generality for variables and figures 
Paula and Daniel (grade 9) collaborate on Task I (Fig. 1). Before Turn 62 they evaluate 
two given algebraic expressions as correct by relating sub-expressions to sub-areas of 
the figure, guided by the concept-in-action ||Relation between expression and shapes as 
corresponding by substructures||. For Till’s expression a· b + ½ · a · h, they don’t find 
structural correspondences and calculate instead:  

62  Paula: So 0.5·a·h, you need values to calculate it.  
…   
66 Daniel: Therefore, we would need this height here. 
67 Paula: Ah, just count it, don’t know. That’s 1 2 3 4.  
…   
71 Paula: So a was 8, right?  
72 Daniel: Yes 
73 Paula: 8 (writes down ), so the half would be, that would be 4 hm  

(counts the units, then counts side lengths and calculates the area) 

Paula’s activities in Turn 62-73 are guided by her individual theorem-in-action: <For 
finding out which expression is correct, I can calculate the value of the expressions>.  
Beyond it, we reconstruct her concept-in-action ||Relation between expression and shape 
as decidable by quantities||. Both students search for specific measures for calculating 
(Paula in Turn 62, Daniel in Turn 66). They solve their need by the theorem-in-action 



  
<For calculating the value of an algebraic expression, I can replace the variable by the 
side lengths in the drawing> (Turn 71ff), beyond which we reconstruct the concept-in-
action ||Variable as hidden specific number||. Like many other students in our study, 
Paula und Daniel are guided by their individual focus on specific lengths. A short while 
later, they compare algebraic expressions by their values for a specific insertion:  

93 Daniel: that was Till (writes    ) 
94 Paula: mhm – Maybe we calculate about Ole, which result is the right one. 

The theorem-in-action <For comparing two expressions, I can compare the results of the 
expressions> assists Paula to correctly evaluate Till’s and Ole’s expression as equiva-
lent. However, the underlying concept-in-action ||Equivalence as equality of results|| is 
only partially correct, since it limits the insertion equivalence to specific numbers. Their 
limited degree of generality for the variables is connected to a well-known misconcep-
tion for the geometric shapes: Paula and Daniel do not apply the geometric concept 
||Geometric shape as general figure|| in which changeable side lengths (and as a conse-
quence the form of the shape) are considered, but instead they apply the individual con-
cept-in-action ||Geometric shapes as specific drawings|| (cf. Parzysz, 1988) in which 
side lengths are fixed to the specific drawn measures.  
Paula’s and Daniel’s restriction to ||Equivalence as specific insertion equivalence|| and 
||Variable as hidden specific number|| becomes an evident obstacle for developing the 
concept of general insertion equivalence when working with Task II where the fictitious 
student Till inserts several numbers for comparing the expressions in the next scene. 

27 
… 

Paula: 
 

We filled in the right numbers and he took anyones? 
 

30 
31 

Daniel: 
Teacher: 

Huh? That’s not possible.  
Why is that impossible?	  

 32 Daniel: You just can’t insert different numbers.	  
	   	   	   	  

Due to their concept-in-action ||Variable as hidden specific number||, their theorem-in-
action <For comparing two expressions, I can compare the results of the expressions> is 
limited to one insertion (the specific drawn lengths), so that they can not get access to 
the general insertion equivalence. From this snapshot and comparable episodes from 
other case studies, we conclude that at this point in the learning process, the individual 
concepts-in-action on variables and geometric shapes like those of Paula and Daniel  

Table 1.  Degree of generality as a challenge on the pathway to insertion equivalence 

 Specific General 
Conceptions for  
variables hidden specific number changing / generalized numbers  

Conceptions for  
geometric shapes 

specific drawing with  
fixed side length  

general figure with  
varying side lengths 

Conceptions for  
equivalence of expressions 

specific insertion equivalence / 
specific description equivalence 

general insertion equivalence / 
general description equivalence  



  
provide a challenge for the development of conceptual algebraic understanding (see Ta-
ble 1). Although in the later part of the design experiment, many students succeed in 
overcoming this challenge of limited degree of generality, we emphasize that in the first 
encounter, the geometric interpretation of expressions can become a source of a concep-
tual challenge if limited geometric understanding is activated. 

3.2 Episode 2 of Jan & Niclas: Intermediate generality in operational perspectives 
Jan and Niclas (grade 7) also work on Task I and start by finding an own way of calcu-
lating the area. Niclas struggles with Ole’s expression a · (b + h/2). The understanding 
of generality in the tasks is a similar challenge for them. 

56	   Niclas:	   Me, for example, I would know how to calculate the area,  
but the whole expression.	  

…	   Niclas:	   (explains correctly how he would calculate the area of the drawing).	  
61 Teacher: Mhm, just write it down anyway. 
…  (Jan wants to know, if he got right in understanding Niclas.) 
63 Niclas:  

 
… can I just do it with units, that I count this (he first touches the lower side 
and afterwards the height of the triangle) so or just six units?  

…   
66 Jan: … there is nothing specified.  
67 Niclas: Yes 
68 Jan: There are none, so now that is, I mean, how many, let me say,  

that are 3 meters (hints to side b) that are 4 meters (hints to side a). 
It is only now that it is specified how long the sides are. 

69	   Teacher:	   How long could they be, the sides?	  
70	   Jan:	   Different, as you can actually choose, x-variable.	  	  
71 Teacher: mhm 	  
72 Niclas: Or maybe one unit as one meter, that are 16 meters (hints to side 

a) that are 9 meters (hints to side b, gives a shrug), aren’t they?	   
73 Jan: Also possible. 

Both boys operate with the individual theorem-in-action <For calculating the area of the 
given shape, I can insert values for the variables>, but while negotiating which value to 
insert, divergent concepts-in-action appear: Whereas Jan emphasizes that different val-
ues can be inserted (Turn 68, 70) and thus activates a high degree of generality, Niclas 
first starts with the concept-in-action ||Variable as place holder for specific numbers|| in 
Turn 63. Reacting on Jan’s objection in Turn 72, he widens his theorem-in-action to 
<For calculating the area of a given shape, I can insert the side length with variable 
scales>. Thus, he changes his concept-in-action into ||Variable as a place holder for spe-
cific numbers but variable scales||. This concept-in-action is in line with the geometrical 
concept-in-action ||Geometric shape as drawings with specific side length but variable 
scales||. Since this concept-in-action is still restricted to geometrically similar drawings, 
we classify Niclas’ concepts-in-action as having an intermediate degree of generality 
(locating between the columns of Table 1). With these higher degrees of generality, 
their further pathway to insertion equivalence is smoother than that of Daniel and Paula.  



  
However, their pathway to description equivalence is challenged by serious difficulties 
to connect the shape and the expression. The problem first appears in Turn 56, when 
Niclas claims not to be able to formulate an own expression. His use of variables seems 
to be restricted to inserting and calculating, so we reconstruct the operational concepts-
in-action ||Expression as prompt to calculate|| and beyond that ||Variable as place hold-
ers||, but not ||Expression as description for structures|| (see Table 2). In contrast to Dan-
iel and Paula who can (sometimes) activate ||Relation between expression and shapes as 
corresponding by substructures||, Niclas and Jan only draw connections between expres-
sions and shapes when the expressions are written with numbers instead of variables. 
Later, the teacher prompts them to find sub-expressions with variables in the figure:  

406 Teacher: Mhm and why did Till actually first multiply a times b and than a times h – 
and afterwards divide that by two? – Do you have an idea how he could have 
found that out?  

407 Niclas: Uff – well, maybe to make it easier or something like that. 
408 Jan: Well, actually he did a times h… 
409 Niclas: …Because he has – he has these lengths [hints to a and b] or this infor-

mation [hints to the expressions] this is what he already has, that’s why you 
can do this … [interrupts himself, break 8 sec.]   

410 Jan: Do you know how Ole works? 
411 Niclas: Hm – no idea [laughs] – how you can find it out 

In Turn 409, Niclas explicitly refers to the algebraic expressions and the figure, but in-
terrupts himself when trying to relate them to each other. The formerly used individual 
theorem-in-action <For connecting the shape and the expression, I can insert the side 
lengths> is explicitly excluded by the teacher’s prompt to consider the sub-expressions 
with variables, but he does not find any other way to relate the shape and the expression. 
We draw this challenge back to a completely operational perspective of the expression, 
namely the concept-in-action ||Expressions as prompt to calculate|| which is directly 
connected to ||Variable as place holders|| (see Table 2). Turns 406-411 show how these 
concepts-in-action hinder the boys’ capacity to relate the shape and the expression. Ta-
ble 2 is the condensed outcome of a comparison of several cases and systematizes the 
observed problems and logical connections. It generalizes the well-known relational-
operational dichotomy from the equal sign to variables, expressions and the understand-
ing of equivalence. The restriction to the main activity in the operational perspective 
(calculating expressions) has consequences for the variable as well as for the corre-
spondence between algebraic expression and geometric shape. For the pathway to de-
scription equivalence, operational perspectives on expressions must be complemented 
by relational ones that focus on own formulations of expressions, structures and inter-
pretations. Unless the variable is considered only as place holder and the expression on-
ly as prompt to calculate, the correspondence between expressions and shapes can not 
be drawn by relating substructures. In this way, the concepts-in-action in the different 
lines of Table 2 are deeply connected and the transition from operational to relational 
perspectives is crucial. 



  

Table 2.  Operational – relational dichotomy as a challenge on the pathway to description equivalence 

 Operational perspectives on 
variables and expressions 

Relational perspectives on  
variables and expressions 

Main activities calculate formulate, interpret, structure 

Conception for  
algebraic expression	  

prompt to calculate, 
numbers must be inserted  
before dealing with expressions 

description for structures (e.g., pat-
tern) for unknown / general numbers	  

Conceptions for  
variables 

place holder for numbers  
 

specific numbers or  
changing / generalized numbers  

Correspondence between  
algebraic expression  
and geometric shape 

Relate only quantities  
(numbers, values <->  
 side length, areas)  

Relate also structures  
(operations or subexpressions <-> 
substructures and parts of shape) 

Conceptions for  
equivalence of expressions 

only insertion  
equivalence 

insertion and description  
equivalence 

4. CONCLUSION AND OUTLOOK 
The empirical analysis of typical challenges showed two important dimensions in which 
students have to develop their initial conceptions on their pathways to a conceptual un-
derstanding of the equivalence of expressions. To understand a general insertion and 
description equivalence: (1) the degree of generality attributed to variables and geomet-
ric shapes (Table 1; vertical axis in Fig. 2), relational perspectives on variables, expres-
sions and - as a consequence - the relation between expressions and geometric shapes 
(Table 2; horizontal axis in Fig. 2) are the main challenges to overcome. Although and 
(2) the operational versus the four students finally succeeded in overcoming these chal-
lenges, our extracts of their processes show typical moments and intermediate states of 
the development in these two dimensions of challenges. The first episode with Paula 
and Daniel shows how a specific understanding of variables and geometric shapes limits 
students’ conceptions for the equivalence of expressions. 
In the second episode, Jan pro-
vides a higher degree of generali-
ty, and Niclas adopts an interme-
diate conception on variables as 
specified numbers with variable 
scales. Jan and Niclas additionally 
struggle with their purely opera-
tional interpretation of expres-
sions, variables and the connec-
tion between geometric shapes 
and algebraic expressions. This 
interpretation hinders their path-
way towards description equivalence.  

	   	   	  

General  general  
insertion equivalence 

(Episode 2b: Jan) 

general insertion and  
description equivalence  

(Intended Understanding) 

 intermediate state  
(Episode 2a: Niclas) intermediate state 

 

Specific 

only specific  
insertion equivalence 

only specific insertion and  
description equivalence 

(Episode 1: Paula and Daniel) 

         Operational  
        perspectives  

Relational  
perspectives  

Fig. 2.  Overcoming conceptual challenges in two dimensions: 
Overview on the cases  



  
In the larger design research project, these findings initiated the design of additional 
tasks that help to overcome these challenges (cf. Prediger & Zwetzschler, 2013). In 
those tasks, our purpose was to widen students’ perspectives from being purely opera-
tional to also becoming relational. Therefore, we integrated tasks that focus on structural 
connections between geometric shapes and (first arithmetic and later algebraic) expres-
sions by making explicit the strategies for finding substructures in expression and 
shapes. One example is given in Task (III) in Fig. 3 (Prediger et al., 2011). As the figure 
shows,  the students need to adopt a relational perspective in order to find out which el-
ements belong together. The focus on substructures is strengthened by the verbalization 
of strategies as a third element that serves as conceptual bridge to overcome the gap be-
tween the drawing and the expressions.  

 
The following design experiments showed that this task encourages students to draw 
connections and thus to gain access to the learning pathway towards understanding de-
scription equivalence. Further analysis of the generated learning processes are conduct-
ed in Zwetzschler (2013). 
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