Selected publications
  1. D. Kuzmin, Slope limiting for discontinuous Galerkin approximations with a possibly non-orthogonal Taylor basis. Ergebnisberichte Angew. Math. 430, TU Dortmund, 2011.
  2. D. Kuzmin and Y. Gorb, A flux-corrected transport algorithm for handling the close-packing limit in dense suspensions. Ergebnisberichte Angew. Math. 429, TU Dortmund, 2011.
  3. D. Kuzmin, Linearity-preserving flux correction and convergence acceleration for constrained Galerkin schemes. Ergebnisberichte Angew. Math. 421, TU Dortmund, 2011.
  4. O. Boiarkine, D. Kuzmin, S. Canic, G. Guidoboni and A. Mikelic, A positivity-preserving ALE finite element scheme for convection-diffusion equations in moving domains. J. Comput. Phys. 230 (2011) 2896-2914.
  5. Free CFD book: A Guide to Numerical Methods for Transport Equations , University Erlangen-Nuremberg, 2010.
  6. D. Kuzmin and M. Möller, Goal-oriented mesh adaptation for flux-limited approximations to steady hyperbolic problems. Ergebnisberichte Angew. Math. 394. To appear in J. Comput. Appl. Math.
  7. D. Kuzmin, A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods. Ergebnisberichte Angew. Math. 389, TU Dortmund, 2009. To appear in J. Comput. Appl. Math.
  8. M. Gurris, D. Kuzmin and S. Turek, Finite element simulation of compressible particle-laden gas flows, Ergebnisberichte Angew. Math. 388, TU Dortmund, 2009.
  9. D. Kuzmin and S. Korotov, Goal-oriented a posteriori error estimates for transport problems. Ergebnisberichte Angew. Math. 386, TU Dortmund, 2009 To appear in Math. Comput. Simul.
  10. D. Kuzmin, M.J. Shashkov and D. Svyatskiy, A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems on arbitrary meshes.Ergebnisberichte Angew. Math. 373, TU Dortmund, 2008. J. Comput. Phys. 228 (2009) 3448-3463.
  11. D. Kuzmin, Explicit and implicit FEM-FCT algorithms with flux linearization. Ergebnisberichte Angew. Math. 358, University of Dortmund, 2008. J. Comput. Phys. 228 (2009) 2517-2534.
  12. D. Kuzmin, O. Mierka and S. Turek, On the implementation of the k-epsilon turbulence model in incompressible flow solvers based on a finite element discretization. Ergebnisberichte Angew. Math. 345, University of Dortmund, 2007. Int. J. Comp. Sci. Math. 1 (2007) no. 2/3/4, 193-206.
  13. D. Kuzmin, Algebraic flux correction for finite element discretizations of coupled systems. In: E. Onate, M. Papadrakakis and B. Schrefler (eds.) Computational Methods for Coupled Problems in Science and Engineering II, CIMNE, Barcelona, 2007, 653-656.
  14. D. Kuzmin, On the design of algebraic flux correction schemes for quadratic finite elements. J. Comput. Appl. Math. 218 (2008) no. 1, 79-87.
  15. M. Möller, D. Kuzmin and D. Kourounis, Implicit FEM-FCT algorithms and discrete Newton methods for transient convection problems Ergebnisberichte Angew. Math. 340, University of Dortmund, 2007. Int. J. Numer. Meth. Fluids In press.
  16. M. Gurris, D. Kuzmin and S. Turek, A high-resolution scheme of TVD type for the Aw-Rascle Greenberg model of traffic flow. Ergebnisberichte Angew. Math. 329, University of Dortmund, 2006.
  17. D. Kuzmin, On the design of general-purpose flux limiters for implicit FEM with a consistent mass matrix. I. Scalar convection. Ergebnisberichte Angew. Math. 299, University of Dortmund, 2005. J. Comput. Phys. 219 (2006) 513-531.
  18. D. Kuzmin, S. Turek and H. Haario, Finite element simulation of turbulent bubbly flows in gas-liquid reactors. Ergebnisberichte Angew. Math. 298, University of Dortmund, 2005.
  19. M. Möller and D. Kuzmin, Adaptive mesh refinement for high-resolution finite element schemes. Int. J. Numer. Meth. Fluids 52 (2006) 1197-1203.
  20. D. Kuzmin, R. Löhner and S. Turek (Eds.), Flux-Corrected Transport: Principles, Algorithms, and Applications. Springer: Scientific Computation, 2005.
  21. F. Platte, D. Kuzmin, Ch. Fredebeul and S. Turek, Novel simulation approaches for cyclic-steady-state fixed-bed processes exhibiting sharp fronts and shocks. In: M.G. de Bruin, D.H. Mache and J. Szabados, Trends and Applications in Constructive Approximation. Int. Series of Numer. Math. Vol. 151, Birkhäuser Verlag, Basel, 2005, 207-223.
  22. D. Kuzmin and S. Turek, Numerical simulation of turbulent bubbly flows. Ergebnisberichte Angew. Math. 254, University of Dortmund, 2004. In: Proceedings of the Third International Symposium on Two-Phase Flow Modeling and Experimentation. (Pisa, Italy, September 22-25, 2004.)
  23. D. Kuzmin and S. Turek, Multidimensional FEM-TVD paradigm for convection-dominated flows. Ergebnisberichte Angew. Math. 253, University of Dortmund, 2004. In: Proceedings of the IV European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2004). Vol. II, ISBN 951-39-1869-6.
  24. D. Kuzmin and M. Möller, Algebraic flux correction I. Scalar conservation laws. Ergebnisberichte Angew. Math. 249, University of Dortmund, 2004.
  25. D. Kuzmin and M. Möller, Algebraic flux correction II. Compressible Euler equations. Ergebnisberichte Angew. Math. 250, University of Dortmund, 2004.
  26. S. Turek and D. Kuzmin, Algebraic flux correction III. Incompressible flow problems. Ergebnisberichte Angew. Math. 270, University of Dortmund, 2004.
  27. D. Kuzmin, M. Möller and S. Turek, High-resolution FEM-FCT schemes for multidimensional conservation laws. Ergebnisberichte Angew. Math. 231, University of Dortmund, 2003. Computer Meth. Appl. Mech. Engrg. 193 (2004) 4915-4946.
  28. D. Kuzmin and S. Turek, High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter. Ergebnisberichte Angew. Math. 229, University of Dortmund, 2003. J. Comput. Phys. 198 (2004) 131-158.
  29. M. Möller, D. Kuzmin and S. Turek, Implicit FEM-FCT algorithm for compressible flows. In: M. Feistauer et al. (eds.), Numerical Mathematics and Advanced Applications (Proceedings of ENUMATH 2003), Springer, 2004, 641-650.
  30. D. Kuzmin and S. Turek, Finite element discretization tools for gas-liquid flow. In: M. Sommerfeld (ed.), Bubbly Flows: Analysis, Modelling and Calculation, Springer, 2004, 191-201.
  31. D. Kuzmin and S. Turek, High-Performance-Computing für Mehrphasenströmungen, Uni Report 35, University of Dortmund, 2002
  32. D. Kuzmin and S. Turek, Finite element discretization and iterative solution techniques for multiphase flows in gas-liquid reactors. Ergebnisberichte Angew. Math. 222, University of Dortmund, 2002. In: M. Krizek et al. (eds), Conjugate Gradient Algorithms and Finite Element Methods , Springer, 2004, 297-324.
  33. M. Möller, D. Kuzmin and S. Turek, Implicit flux-corrected transport algorithm for finite element simulation of the compressible Euler equations. Ergebnisberichte Angew. Math. 221, University of Dortmund, 2002. In: M. Krizek et al. (eds), Conjugate Gradient Algorithms and Finite Element Methods , Springer, 2004, 325-354.
  34. D. Kuzmin, M. Möller and S. Turek, Multidimensional FEM-FCT schemes for arbitrary time-stepping. Ergebnisberichte Angew. Math. 215, University of Dortmund, 2002. Int. J. Numer. Meth. Fluids 42 (2003) 265-295.
  35. D. Kuzmin and S. Turek, Explicit and implicit high-resolution finite element schemes based on the Flux-Corrected-Transport algorithm. In: F. Brezzi et al. (Eds.), Proceedings of the 4th European Conference on Numerical Mathematics and Advanced Applications, Springer-Verlag Italy, 2003, 133-143.
  36. D. Kuzmin and S. Turek, Flux correction tools for finite elements. J. Comput. Phys. 175 (2002) 525-558.
  37. D. Kuzmin, Positive finite element schemes based on the flux-corrected transport procedure, In: K. J. Bathe (ed), Computational Fluid and Solid Mechanics, Elsevier, 2001, 887-888.
  38. D. Kuzmin and S. Turek, Efficient numerical techniques for flow simulation in bubble column reactors. In: Preprints of the 5th German-Japanese Symposium on Bubble Columns , VDI/GVC, 2000, 99-104.
  39. D. Kuzmin, Numerical simulation of mass transfer and chemical reactions in gas-liquid flows. In: Proceedings of the 3rd European Conference on Numerical Mathematics and Advanced Applications , World Scientific, 2000, 237-244.
  40. D. Kuzmin, A high-resolution finite element scheme for convection-dominated transport. Commun. Numer. Meth. Engrg. 16 (2000), no. 3, 215-223.
  41. D. Kuzmin, The free-Lagrange FEM for problems in time-dependent domains: Boundary discretization. In: Proceedings of Analysis and Approximation of Boundary Value Problems, P. Neittaanmäki and L. Rivkind, editors, Reports of the Department of Mathematical Information Technology A 2, University of Jyväskylä, 2000, 115-125.
  42. D. Kuzmin, Numerical Simulation of Reactive Bubbly Flows. Dissertation, Jyväskylä Studies in Computing 2, University of Jyväskylä, 1999.
  43. A. Smolianski and D. Kuzmin, Multilayer Taylor-Galerkin schemes for convection problems. Int. J. Numer. Meth. Engrg. 46 (1999), no. 5, 659-670.