NUMERICAL SIMULATION OF TURBULENT BUBBLY FLOWS

Dmitri Kuzmin and Stefan Turek

Institute of Applied Mathematics (LS III), University of Dortmund
Vogelpothsweg 87, D-44227, Dortmund, Germany

A mathematical model for turbulent gas-liquid flows with mass transfer and chemical reactions is presented and a robust solution strategy based on nested iterations is proposed for the numerical treatment of the intricately coupled PDEs. In particular, the incompressible Navier-Stokes equations are solved by a discrete projection scheme from the family of Pressure Schur Complement methods. Novel high-resolution finite element schemes of FCT and TVD type are employed for the discretization of unstable convective terms. The implementation of a modified $k-\varepsilon$ turbulence model is described in detail. The performance of the developed simulation tools is illustrated by a number of three-dimensional numerical examples.

1 INTRODUCTION

Bubble columns and airlift loop reactors are widely used in industry as contacting devices which enable gaseous and liquid species to react. Therefore, a lot of research has been devoted to the development of advanced CFD models for turbulent bubbly flows with or without mass transfer and chemical reactions. A comprehensive summary of recent results can be found in the proceedings of the priority research program Analysis, Modelling and Numerical Calculation of Multiphase Flows [22]. At the same time, publications regarding the aspects of discretization and practical implementation of the proposed models (including a detailed description of all difficulties and of the employed remedies) have been very scarce. A notable exception is the recently published work of Sokolichin [24].

Most of the researchers involved in modeling of gas-liquid flows use commercial CFD software which is typically based on robust but insufficiently accurate and/or efficient numerical algorithms. This is why we abstain from a lengthy discussion of different models and concentrate on the computational aspects which are equally important for quantitative flow prediction. In particular, we address the numerical treatment of convective terms as well as the implementation of the $k-\varepsilon$ turbulence model and other critical issues which often remain ‘behind the curtains’.

2 DRIFT-FLUX MODEL

In this paper, we adopt a simplified two-fluid (Euler-Euler) model which is based on an analog of the Boussinesq approximation for natural convection problems. It is applicable to buoyancy-driven bubbly flows at moderate gas holdups (up to 10%). In this case, the gas-liquid mixture behaves as a weakly compressible fluid and the velocity u_L of the liquid phase is essentially divergence-free.

Following Sokolichin et al. [23],[24], we neglect the dependence of the effective density $\tilde{\rho}_G$ on the local gas holdup ϵ everywhere but in the gravity force. This simplification, which is commonly employed for single-phase incompressible flows induced by temperature gradients, leads to the following generalization of the Navier-Stokes equations

$$\frac{\partial u_L}{\partial t} + u_L \cdot \nabla u_L = -\nabla p_s + \nabla \cdot (\nu_T D(u_L)) - \epsilon g,$$

$$\nabla \cdot u_L = 0,$$

$$p_s = \frac{\rho - \rho_{atm}}{\rho_L} + g \cdot x - gb, \quad (1)$$

where $D(u) = \nabla u + \nabla u^T$ and the effective viscosity $\nu_T = C_p \frac{k^2}{\varepsilon}$ is a function of the turbulent kinetic energy k and its dissipation rate ε. The evolution of these quantities is described by two scalar transport equations

$$\frac{\partial \varepsilon}{\partial t} + \nabla \cdot (\varepsilon u_L - \frac{\nu_T}{\sigma_{\varepsilon}} \nabla \varepsilon) = \frac{\varepsilon}{k}(C_1 \varepsilon + C_s S_k + C_2 \varepsilon) - \frac{\varepsilon}{t} \left(C_S \varepsilon + C_3 \varepsilon \right), \quad (2)$$

where the production terms $P_k = \frac{\varepsilon}{\sigma_k} |\nabla u + \nabla u^T|^2$ and $S_k = -C_1 \varepsilon \nabla \varepsilon \cdot u_{slip}$ are due to the shear and bubble-induced turbulence, respectively. The involved constants $C_p = 0.09$, $C_1 = 1.44$, $C_2 = 1.92$, $\sigma_k = 1.0$, $\sigma_{\varepsilon} = 1.3$ for the standard $k-\varepsilon$ model are known with high precision, whereas the BIT parameters $C_k \in [0.01, 1]$ and $C_{\varepsilon} \in [1, 1.92]$ are highly problem-dependent [24]. The slip velocity u_{slip} is proportional to the pressure gradient [21]

$$u_{slip} = -\frac{\nabla p}{C_W}, \quad C_W \approx 5 \times 10^4 \frac{kg}{m^3 s}. \quad (4)$$

The gas density ρ_G is assumed to satisfy the ideal gas law $p = \rho_G \frac{RT}{m} T$, which enables us to express the gas holdup ϵ and the interfacial area a_S per unit volume as follows [10]

$$\epsilon = \frac{\rho_G RT}{m}, \quad a_S = (4\pi n)^{1/3}(3\epsilon)^{2/3}. \quad (5)$$

The effective density $\tilde{\rho}_G = \epsilon \rho_G$ and the number density n satisfy the following continuity equations

$$\frac{\partial \tilde{\rho}_G}{\partial t} + \nabla \cdot (\tilde{\rho}_G u_G) = -m_{int}, \quad (5)$$

$$\frac{\partial n}{\partial t} + \nabla \cdot (n u_G) = 0. \quad (6)$$
The sink term m_{int} in the first equation is due to reaction-enhanced mass transfer (absorption of gas into the liquid). It depends on the interfacial area a_S and can be modeled in accordance with the standard two-film theory. The effective concentrations of all species in the liquid phase are described by extra convection-reaction-diffusion equations [9],[10]. If the coalescence and breakup of bubbles cannot be neglected, equation (6) should be replaced by a detailed population balance model for the bubble size distribution.

The interphase momentum transfer is typically dominated by the drag force and the density of gas is much smaller than that of liquid, so that the inertia and gravity terms in the momentum equation for the gas phase can be neglected [23],[24]. Under these assumptions, the gas velocity u_G can be computed from the algebraic slip relation

$$u_G = u_L + u_{\text{slip}} + u_{\text{drift}}, \quad u_{\text{drift}} = -d_G \frac{\nabla n}{n},$$

where the drift velocity u_{drift} is introduced to model the bubble path dispersion by turbulent eddies. It is usually assumed that $d_G = v_T/\sigma_G$, where the Schmidt number σ_G equals unity. The above PDE system is to be supplemented by appropriate initial and boundary conditions which depend on the particular application.

Clearly, the presented drift-flux model does not represent the whole range of bubbly flows which occur in engineering practice. Many additional forces and effects may need to be taken into account, especially at high superficial gas velocities. In particular, it is common practice to consider the virtual mass force and questionable ‘radial’ forces in the gas phase momentum equation. Furthermore, some experts argue that the linear relation (4) is unrealistic and propose other empirical correlations for the drag coefficient which depend on the Reynolds number and on the local gas holdup. The influence of the bubble wake, compressibility effects, coalescence/breakup, bubble-induced turbulence and many other phenomena are known to be important but no universal models are available to date.

An alarming trend is to include ‘all relevant forces’ and fit the involved ‘free’ parameters to experimental data. This practice renders the results of a CFD simulation worthless because the values of the empirical constants are problem-dependent and not applicable to other flow configurations for which measurements are impossible or prohibitively expensive. As a result, such ‘advanced’ models do not improve the predictive capability of CFD software but merely increase the computational cost.

We subscribe to the argument of Sokolichin et al. [23] who indicate that ‘relevant forces’ whose

- existence is not experimentally verified and/or
- influence on the simulation results is negligible

do not belong into the mathematical model. It is not unusual that simplified models yield better results. However, one should be aware of their limitations and check if the underlying assumptions are valid in each particular case.

There is little hope for an applied mathematician to resolve all open problems that exist in modeling of bubbly flows, so let us stick to the fairly simple drift flux model and shed some light on the computational aspects. After all, the accuracy, robustness, and efficiency of numerical methods are important prerequisites for costly model extensions and 3D simulations on sufficiently fine meshes.

3 NUMERICAL ALGORITHM

The discretization in space is performed by an unstructured grid finite element method in order to provide an accurate treatment of non-Cartesian geometries with internal obstacles. A manually generated coarse mesh is successively refined to produce hierarchical data structures for the multigrid solver. The incompressible Navier-Stokes equations are solved by a discrete projection scheme from the family of Multilevel Pressure Schur Complement (MPSC) techniques which were developed by Turek [25] and implemented in the open-source software package FEATFLOW (see http://wwwfeatflow.de).

The coupled subproblems are treated sequentially making use of solution values from the previous outer iteration to evaluate the coefficients and source/sink terms which depend on variables other than the one being solved for. The proposed block-iterative algorithm consists of nested loops for the constituents of system (1)–(6). In each time step, the outermost loop is responsible for the coupling of all relevant equation blocks and contains another outer iteration loop for the equations of the $k - \epsilon$ turbulence model (2)–(3) which are closely related to one another and must be solved in a coupled fashion. The buoyancy force in the Navier-Stokes equations is evaluated using the gas holdup from the previous outer iteration and a fixed-point defect correction scheme is employed for the nonlinear convection term, which gives rise to another sequence of outer iterations. The iterative process is repeated until the residual of the momentum equation and/or the relative changes of all variables become small enough.

Operator splitting tools are employed to separate convection-diffusion and absorption-reaction processes at each time step. First, all scalar quantities are transported without taking the sources/sinks into account. The homogeneous equations are decoupled and can be processed in parallel. The updated concentration fields serve as initial data for a nodal ODE system which describes the accumulation and consumption of species. The solution to system (1)–(6) supplemented by the convection-reaction-diffusion equations for effective concentrations is integrated in time from t_n to $t_{n+1} = t_n + \Delta t_n$ as follows:

1. Recover the pressure gradient ∇p via L_2-projection.
2. Calculate the associated slip velocity $u_{\text{slip}} = -\frac{\nabla p}{\epsilon \rho}$.
3. Solve the homogeneous slip velocity $u_{\text{slip}} = -\frac{\nabla p}{\epsilon \rho}$.
4. Update the number density n according to (6).
5. Convert $\bar{\rho}_G$ and n into ϵ and a_S; evaluate m_{int}.
6. Solve the transport equations for concentrations.
7. Solve the ODE systems for absorption-reaction.
8. Enter the inner loop for the $k - \epsilon$ model (2)–(3).
9. Compute the turbulent eddy viscosity $\nu_T = C_p \frac{k^2}{\epsilon}$.
10. Insert ν_T and ϵ into (1) and evaluate the residual.
11. If converged, then proceed to the next time step.
12. Solve the Navier-Stokes equations and go to 1.
An implicit time discretization of Crank-Nicolson or backward Euler type is employed for all equations. The value of the implicitness parameter \(\theta \) and of the local time step can be selected individually for each subproblem so as to maximize accuracy and/or stability. The communication between the subproblem blocks takes place at the end of the common macro time step \(\Delta t \) which is chosen adaptively so as to control the changes of the gas holdup distribution (see below). In what follows, we elucidate some constituents of the numerical algorithm in detail.

3.1 Treatment of convection

Convection is notoriously difficult to treat numerically. The standard Galerkin method is a ‘centered’ scheme which gives rise to an unstable discretization of convective terms. A common remedy is to add streamline diffusion which gives rise to an unstable discretization of convective terms. However, even stabilized high-order methods tend to produce nonphysical under-shoots and overshoots in the vicinity of steep gradients. As a result, negative gas holdups or concentrations may arise, which is clearly unacceptable. The positivity of the implicitness parameter \(\theta \) and \(\varepsilon \) is even more important, since a negative eddy viscosity would trigger numerical instabilities and eventually lead to a breakdown of the simulation. It is possible to get rid of oscillations by adding adaptive artificial diffusion depending on the local solution behavior. Roughly speaking, a high-order scheme can be used in smooth regions but near discontinuities it should be replaced by a low-order scheme like ‘upwind’ which is diffusive enough to prevent the formation of wiggles.

The first discretization procedure to utilize the idea of adaptive switching between high- and low-order methods was the flux-corrected-transport (FCT) algorithm introduced in the early 1970s by Boris and Book [2]. The state-of-the-art generalization proposed by Zalesak [27] has made it possible to incorporate FCT into unstructured grid methods. The foundations of flux correction for finite elements were laid by Löhner et al. [16]. In a series of recent publications [11],[12],[13] we refined the FEM-FCT methodology and extended it to implicit time stepping. Another class of high-resolution methods which has enjoyed an increasing popularity in CFD was developed by Harten [7]. Below we present a generalization of his total variation diminishing (TVD) schemes which is based on a fully multidimensional flux limiter and applicable to arbitrary discretizations in space and time [14].

Discrete upwinding

As a model problem, consider the multidimensional transport equation \(\frac{\partial u}{\partial t} = -\nabla \cdot (\mathbf{v} u) \) discretized in space by the Galerkin FEM or any other linear high-order scheme. For discretely divergence-free velocity fields, we have

\[
M_L \frac{du}{dt} = Ku \iff m_i \frac{du_i}{dt} = \sum_{j \neq i} k_{ij} (u_j - u_i), \quad (7)
\]

where \(M_L = \text{diag}(m_i) \) is the lumped mass matrix and \(K = \{k_{ij}\} \) is the discrete transport operator. If the coefficients \(k_{ij} \) were nonnegative \(\forall j \neq i \), then the semi-discrete scheme would be local extremum diminishing (LED) [8].

The LED property can be enforced by adding an artificial diffusion operator \(D = \{d_{ij}\} \) defined by [11]

\[
d_{ij} = d_{ji} = \max\{0, -k_{ij}, -k_{ji}\}, \quad d_{ii} = -\sum_{j \neq i} d_{ik}. \quad (8)
\]

Indeed, the resulting low-order operator \(L = K + D \) has no negative off-diagonal coefficients. Moreover, this modification is conservative, since the diffusive terms can be represented as a sum of skew-symmetric internodal fluxes:

\[
(Du)_i = \sum_{j \neq i} f_{ij}^d, \quad f_{ij}^d = d_{ij} (u_j - u_i), \quad f_{ji}^d = -f_{ij}^d.
\]

These fluxes are associated with edges of the sparsity graph. Any pair of neighboring nodes \(i \) and \(j \) whose basis functions have overlapping supports \((k_{ij} \neq 0 \text{ or } k_{ji} \neq 0) \) gives rise to such an edge \(ij \) which is oriented so that \(l_{ji} \geq l_{ij} \). This orientation convention implies that node \(i \) is located upwind and \(l_{ij} = \max\{0,k_{ij}\} \).

Flux limiter of TVD type

The ‘discrete upwinding’ technique presented above proves very handy in multidimensions and yields the least diffusive linear LED scheme. However, there exists a \(\theta \)-family of nonlinear antidiffusion operators \(F \) depending on the local smoothness: \(K^* = L + F = K + D + F \). In practice, the antidiffusive term \(F u \) is assembled edge-by-edge from skew-symmetric internodal fluxes

\[
f_{ij}^a = \min\{\Phi(r_{ij})d_{ij}, l_{ij}\}(u_i - u_j), \quad f_{ji}^a := -f_{ij}^a \quad (9)
\]

such that \((Fu)_i = \sum_{j \neq i} f_{ij}^a \) at node \(i \). Here \(\Phi \) is a standard TVD flux limiter (e.g. minmod or superbee) and \(r_{ij} \) is a smoothness indicator evaluated at the upwind node. It can be defined as the slope ratio for a local one-dimensional stencil or as the ratio of auxiliary quantities \(Q_i^\pm \) and \(P_i^\pm \) which represent the upstream and downstream edge contributions to node \(i \), respectively:

\[
P_i^\pm = \sum_{j \neq i} \min\{0,k_{ij}\} \min \{0,u_j - u_i\}, \quad (10)
\]

\[
Q_i^\pm = \sum_{j \neq i} \max\{0,k_{ij}\} \max \{0,u_i - u_j\}. \quad (11)
\]

In other words, all positive antidiffusive fluxes from a downwind node \(j \) into an upwind node \(i \) are limited using the nodal correction factor \(R_{ij} = \Phi(Q_i^+/P_i^+) \), while negative ones are curtailed by \(R_{ij} = \Phi(Q_i^-/P_i^-) \), so that

\[
f_{ij}^a = \min\{R_{ij}^+d_{ij}, l_{ij}\}(u_i - u_j). \quad \text{Note that all the necessary information is extracted from the original matrix } K.
\]

Although the final transport operator \(K^* \) does contain negative off-diagonal coefficients, the flux limiter guarantees that the discretization remains local extremum diminishing. It can be proved that for a given \(u \) there exists a matrix \(L^* \) such that \(K^* u = L^* u \) and \(l_{ij}^* \geq 0, \forall i \neq j \).

After an implicit time discretization by the standard \(\theta \)-scheme, one obtains a nonlinear algebraic system

\[
M_L \frac{u^{n+1} - u^n}{\Delta t} = \theta K^* (u^{n+1}) u^{n+1} + (1-\theta) K^* (u^n) u^n \quad (12)
\]

which can be solved iteratively e.g. by the fixed-point defect correction scheme

\[
u^{(m+1)} = u^{(m)} + [A(u^{(m)})]^{-1} r^{(m)}, \quad u^{(0)} = u^n. \quad (13)
\]
The low-order operator $A(u^{(i)}) = M_L - \theta \Delta t L(u^{(i)})$ constitutes an excellent ‘preconditioner’ for it was designed to be an M-matrix which is easy to ‘invert’. The limited antidiffusive fluxes f^{α}_{ij} are evaluated edge-by-edge and inserted into the global vectors $b^n = M_L u^n + (1 - \theta) \Delta t K^*(u^n) u^n$ and $r^{(m)} = [b^n - A(u^{(m)}) u^{(m)}] + \theta \Delta t F u^{(m)}$ [14].

Flux limiter of FCT type

The generalized FEM-FCT formulation [11],[12] provides an alternative way to design the antidiffusive fluxes f^{α}_{ij} which restore the high accuracy in smooth regions. The total amount of raw antidiffusion is given by

$$f_{ij} = a_{ij}^{(m)} (u_i^{(l)} - u_j^{(l)}) + a_{ij}^0 (u_i^0 - u_j^0), \quad f_{ji} = -f_{ij}, \quad (14)$$

$$a_{ij}^{(m)} = m_{ij} + \theta \Delta t d_{ij}^{(m)}, \quad a_{ij}^0 = -m_{ij} + (1 - \theta) \Delta t d_{ij}^0. \quad (15)$$

Solution-dependent correction factors $\alpha_{ij} \in [0,1]$ are applied to f_{ij} to preclude the comeback of spurious wiggles. The limited antidiffusive fluxes $f^{\alpha}_{ij} = \alpha_{ij} f_{ij}$ are inserted into the defect vector $r^{(m)}$ to reduce the errors induced by mass lumping and discrete upwinding.

At the beginning of each time step, the subproblem

$$M_L \tilde{u} = [M_L + (1 - \theta) \Delta t L(u^n)] u^n \quad (16)$$

is solved for \tilde{u} to determine the local extrema \tilde{u}_{\max} and \tilde{u}_{\min}. The auxiliary solution \tilde{u} is associated with the time instant $t_{n+1-\theta}$ and reduces to u^n for the backward Euler method. In the iterative version of the FEM-FCT algorithm [13] it also incorporates accepted antidiffusion from the previous defect correction steps, so that only the rejected portion of the net flux needs to be processed. Following Zalesak [27] and Löhner [16], we define

$$P^\pm_i = \sum_{j \neq i} \max \{0, f_{ij}\}, \quad Q^\pm_i = \max{\tilde{u}^\pm_{\min} - \tilde{u}_i}. \quad (17)$$

For the scheme to be positivity-preserving, the flux into node i should be multiplied by

$$R^\pm_i = \begin{cases} \min\{1, m_i Q_i^\pm / P_i^\pm\} & \text{if } P_i^\pm \neq 0, \\ 0, & \text{if } P_i^\pm = 0. \end{cases} \quad (18)$$

Due to the fact that $f_{ij} = -f_{ij}$ the ‘optimal’ correction factors are given by

$$\alpha_{ij} = \begin{cases} \min\{R_i^+, R_j^-\} & \text{if } f_{ij} \geq 0, \\ \min\{R_i^-, R_j^+\} & \text{if } f_{ij} < 0. \end{cases} \quad (19)$$

The ins and outs of the FEM-FCT methodology are elucidated in references [11],[12],[13].

3.2 Implementation of the $k-\epsilon$ model

The transport equations (2)–(3) are strongly coupled and nonlinear (recall that the turbulent eddy viscosity ν_T depends on both k and ϵ) so that their numerical solution is anything but trivial. Implementation details and employed ‘tricks’ are rarely reported in the literature, so that a novice to this area of CFD research often needs to reinvent the wheel. In light of the above, we deem it appropriate to discuss the implementation of the $k-\epsilon$ model in some detail and present a practical algorithm that proves very robust.

Positivity-preserving linearization

As already mentioned, the coefficients of system (2)–(3) are ‘frozen’ during each outer iteration and updated as new values of k and ϵ become available. The quasi-linear transport equations can be solved by a scalar FEM-FCT or FEM-TVD algorithm but the linearization procedure must be tailored to the need to preserve the positivity of k and ϵ in a numerical simulation. Due to the presence of sink terms in the right-hand side of both equations, the positivity constraint may be violated even if a high-resolution scheme is employed for the discretization of convective terms. It can be proved that the exact solution to the $k-\epsilon$ model remains nonnegative for positive initial data [18],[19] and it is essential to guarantee that the numerical scheme will also possess this property.

Let us cast equations (2)–(3) in the following form

$$\frac{\partial k}{\partial t} + \nabla \cdot (k \mathbf{u} - d_k \nabla k) + \gamma k = P_k + S_k, \quad (20)$$

$$\frac{\partial \epsilon}{\partial t} + \nabla \cdot (\epsilon \mathbf{u} - d_\epsilon \nabla \epsilon) + C_\epsilon \gamma \epsilon = \gamma (C_1 P_k + C_\epsilon S_k), \quad (21)$$

where the parameter $\gamma = \frac{\nu_T}{\nu}$ is proportional to the specific dissipation rate ($\gamma = C_k \omega$). The turbulent dispersion coefficients are given by $d_k = C_{\nu} \frac{\nu_T}{\nu}$ and $d_\epsilon = C_{\epsilon} \frac{\nu_T}{\nu}$. By definition, the source terms $P_k = \frac{\nu_T}{\nu} |\nabla \mathbf{u} + \nabla \mathbf{u}^T|^2$ and $S_k = \frac{\nu_T}{\nu} |\nabla p|^2$ are nonnegative. Furthermore, the parameters ν_T and γ must also be nonnegative for the solution of the convection-reaction-diffusion equations to be well-behaved [3]. In our numerical algorithm, their values are taken from the previous iteration and their positivity is secured as explained below. This linearization technique was proposed by Lew et al. [15] who noticed that the positivity of the lagged coefficients is even more important than that of the transported quantities and can be readily enforced without violating the discrete conservation principle.

Applying our implicit FEM-FCT/TVD schemes to equations (20) and (21), we arrive at a sequence of nonlinear algebraic systems which can be written as

$$A(u^{(i+1)}) u^{(i+1)} = B(u^{(i)}) u^{(i)} + q^{(k)} \quad (22)$$

Here k is the index of the outermost loop in which the velocity u and the source terms P_k, S_k are updated. The index l refers to the outer iteration for the $k-\epsilon$ model, while the index m is reserved for inner defect correction loops due to iterative flux correction.

The structure of the involved matrices is as follows:

$$A(u) = M_L - \theta \Delta t (K^*(u) + T), \quad B(u) = M_L + (1 - \theta) \Delta t (K^*(u) + T),$$

where $K^*(u)$ is the LED transport operator incorporating nonlinear antidiffusion and T denotes the standard reaction-diffusion operator which is a symmetric positive-definite matrix with nonnegative off-diagonal entries. It is obvious that the discretized production terms $q^{(k)}$ are also nonnegative. Thus, the positivity of $u^{(i)}$ carries over to the new iterate $u^{(i+1)} = A^{-1}(B u^{(i)} + q^{(k)})$ provided that $\theta = 1$ (backward Euler method) or the time step is sufficiently small (satisfies a CFL-like condition for $\theta < 1$). In practice, the ‘inversion’ of A is performed by solving a sequence of linear subproblems within a defect correction loop preconditioned by the monotone low-order operator.
Positivity of coefficients

The predicted values \(k^{(t+1)} \) and \(\epsilon^{(t+1)} \) are used to recompute the parameter \(\gamma^{(t+1)} \) for the next outer iteration (if any). The turbulent eddy viscosity \(\nu_T^{(k)} \) is updated in the outermost loop. In the turbulent flow regime \(\nu_T \gg \nu \) and the laminar viscosity \(\nu \) can be neglected. Hence, we set \(\nu_{\text{eff}} = \nu_T \), where the eddy viscosity \(\nu_T \) is bounded from below by \(\nu \) and from above by the maximum admissible mixing length \(l_{\text{max}} \) (the size of the largest eddies, e.g., the width of the domain). Specifically, we define the limited mixing length \(l_* \) as

\[
l_* = \begin{cases} \frac{\alpha}{\epsilon} & \text{if } \epsilon > \frac{\nu}{l_{\text{max}}} \ni \nu, l_{\text{max}} \ni \alpha = C_p k^{3/2} \end{cases},
\]

(23)

and use it to update the turbulent eddy viscosity \(\nu_T \) in the outermost loop:

\[
\nu_T = \max(\nu/l, \sqrt{k} + C_s \rho |\mathbf{u}_{\text{slip}}| |\mathbf{r}|)
\]

as well as the parameter \(\gamma \) in each outer iteration for the \(k-\epsilon \) model:

\[
\gamma = C_p \frac{k}{\nu_*}, \quad \nu_* = \max(\nu, l_*, \sqrt{k}).
\]

(25)

In the case of a FEM-TVD method, the positivity proof is only valid for the converged solution to (22) while intermediate approximations may exhibit negative values. Since it is impractical to perform many defect correction steps in each outer iteration, we use \(k_* = \max(0, k) \) rather than \(k \) in formulae (23)–(25) in order to prevent taking the square root of a negative number. Upon convergence, this safeguard will not make any difference, since \(k \) will be nonnegative from the outset. The above representation of \(\nu_T \) and \(\gamma \) makes it possible to preclude division by zero and obtain bounded coefficients without making any *ad hoc* assumptions and affecting the actual values of \(k \) and \(\epsilon \).

Initial conditions

Another important issue which is seldom addressed in the CFD literature is the initialization of data for the \(k-\epsilon \) model. As a rule, it is rather difficult to devise a reasonable initial guess for a steady-state simulation or proper initial conditions for a dynamic one. After the startup of a gas-liquid reactor, the two-phase flow remains laminar until enough bubbles have entered the flow field for the turbulent effects to become pronounced. Therefore, we activate the \(k-\epsilon \) model at a certain time \(t_* > 0 \) after the onset of aeration. During the ‘laminar’ initial phase \(t \leq t_* \), a constant effective viscosity \(\nu_0 \) is prescribed. The values to be assigned to \(k \) and \(\epsilon \) at \(t = t_* \) are uniquely defined by the choice of \(\nu_0 \) and of the default mixing length \(l_0 \) in \([l_{\text{min}}, l_{\text{max}}]\) where the threshold parameter \(l_{\text{min}} \) (e.g., the bubble diameter) corresponds to the size of the smallest admissible eddies. We have

\[
k_0 = \left(\frac{\nu_0}{l_0} \right)^2, \quad \epsilon_0 = C_p \frac{k_0^{3/2}}{l_0} \quad \text{at} \quad t \leq t_*.
\]

(26)

This strategy was adopted as the effective viscosity \(\nu_0 \) and the mixing length \(l_0 \) are easier to estimate (at least for a CFD practitioner) than \(k_0 \) and \(\epsilon_0 \). In any case, long-term simulation results are typically not very sensitive to the choice of initial data.

Boundary conditions

If the liquid is supplied along with the gas phase (in a cocurrent or countercurrent mode), then boundary conditions are required at the inlet and outlet. At the inflow boundary \(\Gamma_{\text{in}} \) we prescribe all velocity components and the values of \(k \) and \(\epsilon \):

\[
\mathbf{u} = \mathbf{g}, \quad k = c_{bc} |\mathbf{u}|^2, \quad \epsilon = C_n \frac{k^{3/2}}{l_0} \quad \text{on} \quad \Gamma_{\text{in}},
\]

(27)

where \(c_{bc} \in [0.003, 0.01] \) is an empirical constant [3] and \(|\mathbf{u}| = \sqrt{\mathbf{u} \cdot \mathbf{u}} \) is the Euclidean norm of the velocity. At the outlet \(\Gamma_{\text{out}} \), the normal gradients of all scalar variables are required to vanish and the Neumann (‘do nothing’) boundary conditions are prescribed on \(\Gamma_{\text{out}} \):

\[
\mathbf{n} \cdot [\mathbf{p} I - \nu_T D(\mathbf{u})] = 0, \quad \mathbf{n} \cdot \nabla k = 0, \quad \mathbf{n} \cdot \nabla \epsilon = 0.
\]

(28)

The numerical treatment of inflow and outflow boundary conditions does not present any difficulty. In the finite element framework, relations (28) imply that the surface integrals resulting from integration by parts vanish and do not need to be assembled [25].

At an impervious solid wall \(\Gamma_w \), the normal component of the velocity must vanish, whereas tangential slip is permitted in turbulent flow simulations. The implementation of the no-penetration boundary condition

\[
\mathbf{n} \cdot \mathbf{u} = 0 \quad \text{on} \quad \Gamma_w
\]

(29)

is nontrivial if the boundary is not aligned with the axes of the Cartesian coordinate system. In this case, condition (29) is imposed on a linear combination of several velocity components whereas their boundary values are unknown. Therefore, standard implementation techniques for Dirichlet boundary conditions based on a modification of the corresponding matrix rows [25] cannot be used.

In order to set the normal velocity component equal to zero, we nullify the off-diagonal entries of the preconditioner \(A(\mathbf{u}^{(m)}) = \{a_{ij}^{(m)}\} \) in the defect correction loop (13). This enables us to compute the boundary values of the vector \(\mathbf{u} \) explicitly before solving a sequence of linear systems for the velocity components:

\[
a_{ij}^{(m)} := 0, \quad \forall j \neq i, \quad \mathbf{u}_i^{*} := \mathbf{u}_i - \frac{r_i^{(m)}}{a_{ii}^{(m)}} a_{ij}^{(m)}
\]

(30)

for \(\mathbf{x}_i \in \Gamma_w \). In the next step, we project the predicted values \(\mathbf{u}_i^{*} \) onto the tangent vector/plane and constrain the corresponding entry of the defect vector \(r_i^{(m)} \) to be zero

\[
\mathbf{u}_i^{(m)} := \mathbf{u}_i^{*} - (\mathbf{n}_i \cdot \mathbf{u}_i^{*}) \mathbf{n}_i, \quad r_i^{(m)} := 0.
\]

(31)

After this manipulation, the corrected values \(\mathbf{u}_i^{(m)} \) act as Dirichlet boundary conditions for the solution \(\mathbf{u}_i^{(m+1)} \) at the end of the defect correction step. As an alternative to the implementation technique of predictor-corrector type, the projection can be applied to the residual vector rather than to the nodal values of the velocity:

\[
a_{ij}^{(m)} := 0, \quad \forall j \neq i, \quad r_i^{(m)} := r_i^{(m)} - (\mathbf{n}_i \cdot r_i^{(m)}) \mathbf{n}_i.
\]

(32)

For Cartesian geometries, the modifications to be performed affect just one velocity component (in the normal direction) as in the case of standard Dirichlet boundary conditions. Note that virtually no extra programming effort is required, which is a significant advantage as compared to another feasible approach based on local coordinate transformations during the matrix assembly [4].
Wall functions

To complete the problem statement we still need to prescribe the tangential stress as well as the boundary values of k and ε on Γ_w. Note that the equations of the $k-\varepsilon$ model are invalid in the vicinity of the wall where the Reynolds number is rather low and viscous effects are dominant. In order to avoid the need for resolution of strong velocity gradients, wall functions can be derived using the boundary layer theory and applied at an internal boundary Γ_δ located at a distance δ from the solid wall Γ_w [17],[18],[19].

In essence, a boundary layer of width δ is removed from the actual computational domain Ω and the equations are solved in the reduced domain Ω_δ subject to the following empirical boundary conditions:

$$n \cdot D(u) \cdot t = -\frac{u^2}{\nu_T} \frac{u}{\|u\|}, \quad k = \frac{\nu^2}{\sqrt{\varepsilon}} \frac{\varepsilon}{\varepsilon}, \quad \varepsilon = \frac{\nu^2}{\kappa \delta} \quad \text{on} \ \Gamma_\delta. \quad (33)$$

Here the unit vector t refers to the tangential direction, $\kappa = 0.41$ is the von Kármán constant and u_τ is the friction velocity which is assumed to satisfy the nonlinear equation

$$g(u_\tau) = |u| - u_\tau \left(\frac{1}{\kappa} \log y^+ + 5.5 \right) = 0 \quad (34)$$

in the logarithmic layer, where the local Reynolds number $y^+ = \frac{u_\tau}{\nu_T}$ is in the range $20 \leq y^+ \leq 100$, and be a linear function of y^+ in the viscous sublayer, where $y^+ < 20$. Note that u is the tangential velocity as long as condition (29) is imposed on Γ_δ.

Equation (34) can be solved iteratively by Newton’s method [17]:

$$u^{\nu+1}_\tau = u_\tau^\nu - \frac{g(u_\tau^\nu)}{g'(u_\tau^\nu)} = u_\tau^\nu + \frac{|u| - u_\tau f(u_\tau^\nu)}{1/\kappa + f(u_\tau^\nu)}, \quad (35)$$

where the auxiliary function f is given by

$$f(u_\tau) = \frac{1}{\kappa} \log y^+ + 5.5, \quad y^+ = \max \left\{ 0, \frac{20 u_\tau \varepsilon}{\nu} \right\}. \quad (36)$$

The friction velocity is initialized by $u_\tau^0 = \sqrt{\frac{20 \nu}{\varepsilon}}$ and no iterations are performed if it turns out that $y^+ = \frac{u_\tau^0 \varepsilon}{\nu} < 20$. In other words, $u_\tau = u_\tau^0$ in the viscous sublayer. Moreover, we use $y^+_\tau = \max \{20, y^+\}$ in the Newton iteration to guarantee that the approximate solution belongs to the logarithmic layer and remains bounded for $y^+ \to 0$.

The friction velocity u_τ is plugged into (33) to compute the tangential stress, which yields a natural boundary condition for the velocity. Integration by parts in the weak form of the incompressible Navier-Stokes equations (1) gives rise to a surface integral over the internal boundary Γ_δ which contains the prescribed traction:

$$\int_{\Gamma_\delta} \nu_T (n \cdot D(u) \cdot t) \cdot v \, ds = -\int_{\Gamma_\delta} u_\tau^2 u \frac{\|u\|}{\|u\|} \cdot v \, ds. \quad (37)$$

The free slip condition (29) overrides the normal stress and the Dirichlet boundary conditions for k and ε are imposed in the strong sense. For further details regarding the implementation of wall laws in the finite element framework the reader is referred to [17],[18],[19].

3.3 Underrelaxation for outer iterations

Recall that the iterative solution process is based on the following hierarchy of loops

- the main n-loop for the global time-stepping
- the outermost k-loop for system (1)–(6)
- the outer l-loop for the $k-\varepsilon$ model (2)–(3)
- the outer l-loop for the PSC equation, see [25]
- embedded m-loops for the drift-flux model are solved repeatedly within the k-loop. The latter contains the two l-loops as well as subordinate m-loops for each scalar transport problem.

Due to the intricate coupling of the PDEs at hand, it is sometimes worthwhile to use a suitable underrelaxation technique in order to prevent the growth of numerical instabilities and secure the convergence of outer iterations. This task can be accomplished by limiting the solution increments before applying them to the last iterate:

$$u^{(m+1)} = u^{(m)} + \omega^{(m)}(u^{(m+1)} - u^{(m)}), \quad (38)$$

The damping factor $\omega^{(m)}$ may be chosen adaptively so as to accelerate convergence and to minimize the error in a certain norm. However, fixed values (for example, $\omega = 0.8$) usually suffice for practical purposes. The sort of underrelaxation can be used in all loops (indexed by k, l and m) and applied to selected dependent variables like ε or ν_T.

Furthermore, the m-loops lend themselves to the use of an implicit underrelaxation strategy which increases the diagonal dominance of the preconditioner [5],[20]:

$$a_{ii}^{(m)} := \frac{a_{ii}^{(m)}}{\alpha^{(m)}}, \quad \text{where} \ 0 \leq \alpha^{(m)} \leq 1. \quad (39)$$

The scaling of the diagonal entries does not affect the converged solution and proves more robust than explicit underrelaxation (37). In fact, no underrelaxation whatsoever is needed for moderate time steps which are typically used in dynamic simulations.

3.4 Linear solvers and time step

Last but not least, let us briefly discuss the choice of the linear solver and of the time discretization. In many cases, explicit schemes are rather inefficient due to severe stability limitations which require taking impractically small time steps. For this reason, we restrict ourselves to the implicit Crank-Nicolson and backward Euler methods which are unconditionally stable and permit large time steps at the cost of solving nonsymmetric linear systems. In our experience, BiCGSTAB and geometric multigrid constitute excellent solvers as long as the parameters are properly tuned and the underlying smoothers/preconditioners are consistent with the size of the time step. If Δt is rather small, standard components like Jacobi, Gauß-Seidel and SOR schemes will suffice. For large time steps, the condition number of the matrix deteriorates and convergence may fail. This can be rectified by resorting to an ILU factorization and an appropriate renumbering technique.
In order to capture the dynamics of the two-phase flow in a computationally efficient way, we employ adaptive time-stepping based on the PID controller [26]. Choosing the local gas holdup ϵ to be the indicator variable, one obtains the following algorithm:

1. Monitor the relative changes of the gas holdup
 \[e_n = \frac{||e^{n+1} - e^n||}{||e^{n+1}||}. \]

2. If $e_n > \delta$ reject the solution and recompute it using
 \[\Delta t_n = \frac{\delta}{e_n} \Delta t_n. \]

3. Adjust the time step smoothly so as to approach the prescribed tolerance for the relative changes
 \[\Delta t_{n+1} = \left(\frac{e_{n-1}}{e_n} \right)^{k_P} \left(\frac{TOL}{e_n} \right)^{k_I} \left(\frac{e_{n-1}^2}{e_{n-2}} \right)^{k_D} \Delta t_n. \]

4. Limit the growth and reduction of the time step:
 \[\Delta t_{\text{min}} \leq \Delta t_{n+1} \leq \Delta t_{\text{max}}, \quad m \leq \frac{\Delta t_{n+1}}{\Delta t_n} \leq M. \]

4 NUMERICAL EXAMPLES

The developed finite element software builds on the FEATFLOW package and on the underlying FEAT libraries. The multidimensional TVD limiter was incorporated into the matrix assembly routine for the momentum equation and has proved its worth for the nonconforming Q_1 finite elements. The subroutines for the solution of scalar transport equations were equipped with both FCT and TVD limiters. The performance of these algebraic high-resolution schemes was found to be comparable.

The first example deals with the locally aerated bubble column which was investigated by Becker et al. [1]. The snapshots of the meandering bubble swarm displayed in Fig. 1 agree well with experimental data.

The next figure shows the developing gas holdup distribution (top) and instantaneous velocity fields (bottom) in the middle cross section of a prototypical airlift loop reactor (the ragged boundary of the internal part is due to the Cartesian mesh used for visualization in MATLAB). The aeration takes place at the bottom of the riser section where both phases flow cocurrently in the upward direction. At the upper surface, the bubbles escape while the liquid is diverted into the gas-free downcomer forming a closed loop. The two-phase flow reaches a steady state within a few seconds after the startup.

To give an insight into the complex interplay of physical and chemical phenomena, let us consider the absorption of CO$_2$ in a locally aerated bubble column filled with water. The construction parameters are those defined by Becker et al. [1] and adopted in our first 2D simulations for this test case [9]. In the absence of mass transfer, the rising bubbles would expand due to the fall of hydrostatic pressure. However, carbon dioxide is highly soluble in water so that the growth is diminished and the bubbles may even shrink. These effects are nicely reproduced by our model.
The flow pattern is totally different if the mass transfer is accelerated by chemical reactions in the liquid phase. Let us demonstrate this by taking an aqueous solution of sodium hydroxide instead of water. The reaction \(\text{CO}_2 + 2\text{NaOH} \rightarrow \text{Na}_2\text{CO}_3 + \text{H}_2\text{O} \) is so fast that the bubbles are completely dissolved within 20 cm from the inlet (Fig. 4, top). There is no liquid circulation in the upper part of the reactor since the gas does not reach it. A large vortex develops in the vicinity of the gas sparger twisting the concentration of the produced sodium carbonate into a spiral shape (Fig. 4, bottom).

5 CONCLUSIONS

The drift-flux model for buoyancy-driven bubbly flows was coupled with scalar transport equations describing the absorption of gas followed (and enhanced) by chemical reactions in the liquid phase. Turbulence effects were taken into account by means of a modified \(k-\epsilon \) turbulence model which was found to produce reasonable results. Further research is needed to improve the modeling of the bubble-induced turbulence. Recent advances in the field of Large Eddy Simulation (LES) indicate that it might be a good candidate for this purpose.

An unstructured grid finite element method was proposed for the numerical solution. The discretization of the troublesome convective terms was performed by a nonlinear positivity-preserving scheme equipped with a multidimensional flux limiter of FCT or TVD type. Nested iterations were used to provide the coupling of model equations, to get rid of nonlinearities and to solve the linear systems. Some subtleties of the algorithm were discussed in detail. The interplay of the hydrodynamics, mass transfer and chemical reaction was illustrated by numerical examples.

References

