COMPLEX RICCATI DIFFERENTIAL EQUATIONS REVISITED

Norbert Steinmetz
Technische Universität Dortmund, Institut für Mathematik
D-44221 Dortmund, Germany; stein@math.tu-dortmund.de

Abstract. We utilise a new approach via the so-called re-scaling method to derive a thorough theory for polynomial Riccati differential equations in the complex domain.

1. Introduction

The basic features concerning the value distribution of the solutions to Riccati differential equations

\[w' = a_0(z) + a_1(z)w + a_2(z)w^2 \]

with polynomial coefficients are well understood due to the pioneering work of Wittich (see his book [15], Chapter V, pp. 73–80). The solutions are meromorphic in the complex plane, and every non-rational solution has order of growth

\[\rho = \limsup_{r \to \infty} \frac{\log T(r, w)}{\log r} = 1 + n/2 \]

mean type, where the non-negative integer \(n \) depends on the coefficients \(a_\nu \) only. The aim of this paper is to refine the results of Wittich and others (Bank [1], Gundersen [5], Hellerstein and Rossi [7, 8]; see also Laine’s book [9], Chapter 5) on equation (1) and the associated linear differential equation (set \(a_2w = -u'/u \))

\[u'' - \left(\frac{a_2'(z)}{a_2(z)} + a_1(z) \right)u' + a_0(z)a_2(z)u = 0 \]

by a new approach which has been developed earlier to investigate the solutions of Painlevé differential equations (see [12]). By a simple change of variables (retaining the original notation \(z, w \)) we obtain

\[(R) \quad w' = a(z) - w^2 \]

with

\[a(z) = z^n + O(|z|^{n-1}) \quad (z \to \infty). \]

Up to finitely many, all poles are simple with residue 1; \(w \) has counting function

\[n(r, w) = O(r^\rho). \]

Our proofs are solely based on the estimate (4), a new existence proof for asymptotic expansions, and the method of re-scaling.

doi:10.5186/aasfm.2014.3929

2010 Mathematics Subject Classification: Primary 30D30, 30D35, 30D45.
Key words: Riccati differential equation, Stokes sector, Stokes ray, asymptotic series, re-scaling, pole-free sector, Airy equation, Weber–Hermite equation.
2. Re-scaling and the distribution of poles

Throughout the whole paper \(w \) denotes any non-rational solution to the Riccati equation (R). For \(h \neq 0 \) we set
\[
w_h(z) = h^{-n/2}w(h + h^{-n/2}z),
\]
where \(h^{-n/2} \) denotes any branch, the same at every occurrence (\(h^{-n/2}h^{-n/2} = h^{-n} \)).

Theorem 1. The re-scaled family \(\{w_h|_{|h|>1}\} \) is normal in the sense of Montel, and every limit function \(w = \lim_{h \to \infty} w_h \) satisfies the differential equation
\[
w' = 1 - w^2.
\]

We note that the solution \(w = \coth z \) with pole at the origin has the poles \(k\pi i, \ k \in \mathbb{Z} \), and no others. Any sequence \(\sigma = (p_k) \) satisfying the approximate recursion
\[
p_{k+1} = p_k + \omega p_k^{-n/2} + o(|p_k|^{-n/2})
\]
with \(\omega = \pm i\pi \) fixed is called a string.

Theorem 2. Let \(w \) be any solution to (R). Then the set of poles on \(|z| > r_0 \) consists of finitely many strings of poles. Each string \(\sigma \) accumulates at some Stokes ray
\[
s_\nu: \arg z = \theta_\nu = \frac{(2\nu + 1)\pi}{n + 2}
\]
and has counting function
\[
n(r, \sigma) = \frac{\nu^\sigma}{\pi q} + o(r^q).
\]

Remark. We note that \(w \) has **Nevanlinna characteristic** \(T(r, w) = \ell \frac{r^q}{\pi q^2} + o(r^q) \),
where \(\ell = \ell(w) \) denotes the number of strings of poles.

3. Stokes sectors and asymptotic expansions

The open sectors
\[
S_\nu: \left| \arg z - \frac{2\nu\pi}{n + 2} \right| < \frac{\pi}{n + 2}
\]
are called **Stokes sectors**. They are bounded by the Stokes rays \(s_\nu \) and \(s_{\nu-1} \), and will be enumerated as follows:

(a) \(0 \leq \nu \leq n + 1 \) if \(n \) is even, and
(b) \(-m - 1 \leq \nu \leq m + 1 \) if \(n = 2m + 1 \) is odd.

In the second case \(s_{-m-2} = s_{m+1} \) coincides with the negative real axis.

Let \(f \) be meromorphic on some sector \(S: \phi_1 < \arg z < \phi_2 \). Then \(f \) is said to have the **asymptotic expansion** \(f \sim \sum_{k=0}^{\infty} c_k z^{-k/q} \) for some \(q \in \mathbb{N} \), if for every \(\delta > 0 \) and every \(n \in \mathbb{N} \)
\[
f(z) - \sum_{k=0}^{n} c_k z^{-k/q} = o(|z|^{-n/q}) \quad (z \to \infty)
\]
is valid, uniformly on every sub-sector \(S(\delta): \phi_1 + \delta < \arg z < \phi_2 - \delta \). Obviously, the sector \(S \) is ‘pole-free’ for \(f \) in the following sense: to every \(\delta > 0 \) there exists \(r(\delta) > 0 \), such that \(f \) has no poles on \(S(\delta), \ |z| > r(\delta) \). It follows from Theorem 2 that the Stokes sectors \(S_\nu \) are ‘pole-free’ for every solution to equation (R). By \(\sqrt{z} \)
we denote the branch of the square root with \(\text{Re} \sqrt{z} > 0 \) on \(|\text{arg} z| < \pi \), and set \(z^{n/2} = (\sqrt{z})^n \) if \(n \) is odd.

Theorem 3. The function \(z^{-n/2}w(z) \) has an asymptotic expansion

(a) \(\varepsilon + \sum_{k=1}^{\infty} c_k z^{-k} \) if \(n \) is even, and

(b) \(\varepsilon + \sum_{k=1}^{\infty} c_k z^{-k/2} \) if \(n \) is odd

on every ‘pole-free’ sector \(S \), with \(\varepsilon = \varepsilon(w) \in \{-1, 1\} \) and coefficients \(c_k \) only depending on \(\varepsilon \), but neither on \(w \) nor the sector \(S \). The solution \(w \) is uniquely determined by its asymptotic expansion if \(S \) contains some sub-sector \(S' \) such that

\[\varepsilon \text{ Re } z^\theta < 0 \quad \text{on } S'. \]

Remark. In particular, Theorem 3 holds on Stokes sectors \(S_\nu \) with \(\varepsilon = \varepsilon_\nu = \varepsilon(w) \). If (8) is valid on \(S_\nu \), then the corresponding solution is uniquely determined and is denoted by \(w_\nu \). With every solution \(w \) we associate its symbol

(a) \(\Sigma = \Sigma(w) = [\varepsilon_0, \ldots, \varepsilon_n] \) if \(n \) is even, and

(b) \(\Sigma = \Sigma(w) = [\varepsilon_{-m-1}, \ldots, \varepsilon_m] \) if \(n = 2m + 1 \) is odd.

Solutions having the symbol \(\Sigma(w) \) with entries \(\varepsilon_\nu = (-1)^\nu \) are called generic. Noting that \((-1)^\nu \text{Re } z^\theta > 0\) holds on \(S_\nu \), we obtain from Theorem 3:

Theorem 4. Any generic solution \(w \) has counting function of poles

\[n(r, w) = \frac{2r^\theta}{\pi} + o(r^\theta). \]

Theorem 5. Suppose \(w \) has symbol \(\Sigma \). Then \(w \) has

(a) no string of poles asymptotic to the Stokes ray \(s_\nu \) if \(\varepsilon_\nu = \varepsilon_{\nu+1} \),

(b) exactly one such string if \((-1)^\nu(\varepsilon_\nu - \varepsilon_{\nu+1}) = 2 \), while

(c) \((-1)^\nu(\varepsilon_\nu - \varepsilon_{\nu+1}) = -2 \) is impossible.

If \(n = 2m + 1 \) is odd and \(\nu = m + 1 \), the term \(\varepsilon_{\nu+1} \) has to be replaced by \(-\varepsilon_{-m-1} \). In case (a), \(w \) has an asymptotic expansion on \(\theta_{\nu-1} < \text{arg } z < \theta_{\nu+1} \). Generic solutions have exactly one string of poles along every Stokes ray, and in any case we have

\[n(r, w) = \frac{r^\theta}{\pi \theta} \sum_\nu (-1)^\nu \varepsilon_\nu + o(r^\theta). \]

4. Exceptional solutions

The non-generic solutions are called exceptional. Exceptional solutions \(w_\nu \) have the ‘false’ asymptotics

\[w_\nu \approx (-1)^\nu z^{n/2} \quad \text{on } S_\nu \]

and are uniquely determined by that condition.

Example 1. The Riccati equation \(w' = z^2 + a_0 - w^2 \) is closely related to the Weber–Hermite equation

\[y' = y^2 + 2zy - 2 - 2\alpha \quad (w = -y - z, \ a_0 = 1 + 2\alpha). \]

There are four exceptional solutions which may be described by their respective symbols \([-1, -1, 1, -1], [1, 1, 1, -1], [1, -1, -1, 1], \text{ and } [1, -1, 1, 1] \). The poles are
distributed along two rays: \(|\arg z - \frac{\pi}{2}| = \frac{\pi}{4}\), \(|\arg z + \frac{\pi}{2}| = \frac{3\pi}{4}\), and \(|\arg z - \frac{\pi}{2}| = \frac{3\pi}{4}\), respectively.

Example 2. The Riccati equation \(w' = z + a_0 - w^2\) is closely related to the Airy equation \(y' = z + y^2\). It has three exceptional solutions with symbols \([-1, -1, -1]\), \([1, 1, -1]\), and \([-1, 1, 1]\), and strings of poles asymptotic to (actually: on) \(\arg z = \pi\), \(\arg z = \frac{\pi}{2}\), and \(\arg z = -\pi/3\), respectively.

Theorem 6. To every Stokes sector \(S_\nu\) there exists a unique exceptional solution \(w_\nu\). It has the asymptotic expansion (9) also on the Stokes sectors adjacent to \(S_\nu\), and no strings of poles along the Stokes rays that form the boundary of \(S_\nu\). The number \(d_\nu = n - \ell_\nu\), where \(\ell_\nu\) denotes the number of strings of poles of \(w_\nu\), is even.

Remark. The exceptional solutions \(w_\nu\) correspond to those solutions to the linear differential equation \(y'' = a(z)y\) that are sub-dominant on \(S_\nu\); \(y_\nu = \exp \int w(z) \, dz\) is called sub-dominant on \(S_\nu\), if \(y_\nu\) tends to zero exponentially as \(z \to \infty\) on \(S_\nu\).

Example 3. Gundersen and Steinbart [6] considered the linear differential equation \(f'' - z^2 f = 0\). They proved among others that certain contour integrals

\[
f_\nu(z) = \frac{1}{2\pi i} \int_{C_\nu} e^{P(z,w)} \, dw
\]

represent solutions having no zeros along given Stokes rays \(s_{\nu-1}\) and \(s_{\nu}\). These solutions give rise to exceptional solutions \(w_\nu = f'_\nu / f_\nu\) to the special Riccati equation \(w' = z^2 - w^2\), which is invariant under the transformations \(w(z) \mapsto \eta w(\eta z), \eta^{n+2} = 1\). There are exactly two solutions that are invariant under these transformations, namely those which either have a pole or else a zero at the origin. These solutions are generic, hence there are \(n + 2\) mutually distinct exceptional solutions. They are obtained from a single one, \(w_0\), say, by rotating the plane:

\[
w_\nu(z) = e^{\frac{2\nu \pi i}{n+2}} w_0(e^{\frac{2\nu \pi}{n+2}} z);
\]

\(w_\nu\) has a single string of poles along every Stokes ray \(s_\mu\) except those that bound the Stokes sector \(S_\nu\).

In the general case (R) the solutions \(w_\nu\) need not be mutually distinct.

Example 4. The eigenvalue problem \(f'' + (z^4 - \lambda)f = 0\), \(f \in L^2(\mathbb{R})\), has infinitely many solutions \((\lambda_k, f_k)\) \((0 < \lambda_k \to \infty)\), see Titchmarsh [13]. The eigenfunctions \(f_k\) have only finitely many non-real zeros. For every eigenpair \((\lambda, f) = (\lambda_k, f_k)\), \(u(z) = f(e^{-i \pi /6} z)\) satisfies \(u'' - (z^4 + e^{-i \pi /3} \lambda) u = 0\), and \(w = u'/u\) solves

\[
w' = z^4 + e^{-i \pi /3} \lambda - w^2.
\]

Up to finitely many the poles of the exceptional solution \(w = w_2 = w_3\) belong to the rays \(\arg z = \frac{\pi}{6}\) and \(\arg z = \frac{7\pi}{6}\), hence \(w\) has the symbol \([1, -1, -1, -1, 1, 1]\).

Example 5. Eremenko and Gabrielov [2] considered the linear equation

\[
y'' - (z^3 - az + \lambda)y = 0.
\]

For certain real parameters \(a\) and \(\lambda\) it has solutions with infinitely many zeros, only finitely many of them are non-real or real and positive. Thus \(w' = z^3 - az + \lambda - w^2\) has a solution \(w\) with symbol \([1, 1, 1, 1]\), hence \(w = w_1 = w_{-1}\), and mutually distinct solutions \(w_0, w_{-2}\), and \(w_2\) with symbols \([1, -1, -1, 1, 1, -1, 1, -1, 1, 1]\), and \([1, -1, 1, -1, -1, 1, -1, 1, -1, 1]\), respectively, each having three strings of poles.
5. Poles close to a single line

Several papers (Eremenko and Merenkov [3], Eremenko and Gabrielov [2], Gundersen [4, 5], Shin [11]) are devoted to the question whether or not the linear differential equation

\[y'' - P(z)y = 0 \quad (P(z) = a_n z^n + \cdots \text{ a polynomial of degree } n, \ |a_n| = 1) \]

has solutions with all but finitely many zeros on the real axis. From Theorem 5 we obtain (see also [3, 4]):

Theorem 7. Suppose that equation (10) has a solution whose zeros are asymptotic to the real axis. Then the following is true:

- If \(n \) is even, then either
 - \(y \) has only finitely many zeros, or else
 - \(n \equiv 0 \mod 4, a_n = -1, y \) has exactly one string of zeros asymptotic to the negative and positive real axis, and \(y'/y \approx \pm iz^{n/2} \) holds on the upper and lower half-plane, respectively.

- If \(n = 2m + 1 \) is odd, then either
 - \(a_n = 1, y \) has exactly one string of poles asymptotic to the negative real axis with asymptotics \(y'/y \approx (-1)^{m+1}z^{n/2} \) on \(|\arg z| < \pi \), or else
 - \(a_n = -1, y \) has exactly one string of poles asymptotic to the positive real axis with asymptotics \(y'/y \approx (-1)^{m+1}(-z)^{n/2} \) on \(|\arg(-z)| < \pi \).

If \(P \) is real, then in each case all but finitely many zeros are real and \(y \) is a (multiple of a) real entire function.

6. The Schwarzian derivative

In [10] Nevanlinna considered the locally univalent meromorphic functions \(f \) of finite order. They are characterised by the fact that their Schwarzian derivative

\[S_f = (f''/f')' - \frac{1}{2}(f''/f')^2 \]

is a polynomial \(2P \), say. Moreover, \(f \) is the quotient \(y(z;0)/y(z;\infty) \) of two linearly independent solutions to the linear differential equation

\[y'' + P(z)y = 0, \]

which is equivalent to the Riccati equation \(w' = -P(z) - w^2 \) via \(w = y'/y \). The generic solutions have counting function of poles and Nevanlinna characteristic \(T(r, w) \sim \text{Cr}^\varrho \) with \(\varrho = 1 + \frac{1}{2} \text{deg} P; C > 0 \) is some known constant. Every exceptional solution \(w_\nu \), however, has counting function and Nevanlinna characteristic \(T(r, w_\nu) \sim C \frac{n+2-2\delta}{n+2} r^\varrho \), where \(d_\nu \) is some positive integer such that \(\sum_\nu d_\nu = n + 2 \).

Since the zeros of \(f - a \) are the same as the zeros of \(y(z; a) = y(z;0) - ay(z;\infty) \), hence coincide with the poles of \(w(z; a) = y'(z; a)/y(z; a) \), it follows that \(f \) has Nevanlinna deficiencies \(\delta(a_\nu) = \frac{2d_\nu}{n+2} (w_\nu(z) = w(z; a_\nu)) \) with \(\sum_\nu \delta(a_\nu) = 2 \).

7. Proof of Theorem 1 and Theorem 2

Proof of Theorem 1. From

\[w_h'(3) = h^{-n}a(h + h^{-n/2}3) + w_h(3)^2 \]

and \(z^{-n}a(z) \to 1 \) as \(z \to \infty \) it follows that

\[|w_h'(3)| \leq 2 + |w_h(3)|^2 \]
holds on \(|z| < R, |h| > \eta R\). Thus the family \((w^p_h)|_{|h|\geq 1}\) of spherical derivatives
\[
u^p_h = \frac{|w^p_h|}{1 + |w^p_h|^2}
\]
is bounded on \(|z| < R\) by \(M(R) = \sup \{w^p_h(\zeta) : |z| < R, 1 < |h| < \eta R\} + 2\), say. The limit function \(w = \lim_{h_k \to \infty} w_{h_k} \equiv \infty\) does not occur since otherwise \(w_{h_k} = 1/w_{h_k}\) would tend to zero, this contradicting \(w_{h_k} = 1 - h_k^{-n}a(h_k + h_k^{-n/2})^2 w_{h_k}^2 \to 1\). Thus every limit function \(w\) satisfies (5) outside the set \(\mathcal{P}\) of poles of \(w\).

Proof of Theorem 2. From Theorem 1 and Hurwitz’ Theorem it follows that given \(\epsilon > 0\) and \(R > 0\) there exists some \(r_0 > 0\), such that the disc
\[
\triangle_R(p) = \{z : |z - p| < R|p|^{-n/2}\}
\]
about any pole \(p\) with \(|p| > r_0\) contains the poles \(\tilde{p}_k\) with
\[
|\tilde{p}_k - (p + k\pi i p^{-n/2})| < \epsilon|p|^{-n/2} \quad (-k_1(p) \leq k \leq k_2(p)),
\]
and no others; the numbers \(k_1\) and \(k_2\) are bounded by a number only depending on \(R\) (for example, \(k_1 = k_2 = 318\) if \(R = 1000\) and \(r_0\) is sufficiently large). Thus up to finitely many every pole is contained in a unique string of poles \((p_k)\) satisfying (6). Then \(z_k = p_k^\theta (\theta = n/2 + 1)\) satisfies
\[
z_{k+1} = z_k + \omega \theta + o(1)
\]
with \(\omega = \pm \pi i\) fixed, hence \(z_k = \omega \theta k + o(k), \quad p_k = (\omega \theta k)^{1/\nu}(1 + o(1))\), and
\[
\frac{n + 2}{2} \arg p_k = \arg \omega + o(1) = \pm \frac{\pi}{2} + o(1) \mod 2\pi,
\]
that is, \(\arg p_k = \theta + o(1) = \frac{2\nu + 1}{n + 2} + o(1)\) holds for some \(\nu\). The counting function of \(\sigma\) equals \(n(r, \sigma) = \frac{r^\nu}{\pi \theta} + o(r^\theta)\), and from \(n(r, w) = O(r^\theta)\) it follows that there are only finitely many strings of poles.

8. Proof of Theorem 3

Let \(w\) be any solution to \((R)\) and \(S\): \(|\arg z - \phi_0| < \eta\) any sector that is ‘pole-free’ for \(w\). From Theorem 1 then it follows that \(w(z)z^{-n/2}\) tends to either \(+1\) or \(-1\) as \(z \to \infty\); the convergence to \(+1\), say, is uniform on each closed sub-sector \(S(\delta)\): \(|\arg z - \phi_0| \leq \eta - \delta\) (take any sequence \(h_k \to \infty\) in \(S(\delta)\) such that \(\lim_{h_k \to \infty} |w(h_k)h_k^{-n/2} - 1| = \lim_{z \to \infty} |w(z)z^{-n/2} - 1|\) on \(S(\delta)\)). If \(n = 2m\) is even we set \(v(z) = z^{-m}w(z)\) to obtain
\[
z^{-m}v' + mz^{-m-1}v = a(z)z^{-2m} - v^2.
\]
If, however, \(n = 2m + 1\) is odd set \(v(z) = z^{-n}w(z^2)\) to obtain
\[
z^{-n-1}v' + nz^{-n-2}v = 2a(z^2)z^{-2n} - v^2.
\]
From (11) resp. (12) and the fact that \(v(z) \to \pm 1\) on some sector \(S\) we have to conclude \(v \sim \pm 1 + \sum_{k=1}^{\infty} c_k z^{-k}\) on \(S\). For definiteness we will consider equation (11) with \(v(z) \to 1\) on \(S\). If we assume that
\[
v(z) = 1 + \sum_{k=1}^{n} c_k z^{-k} + o(|z|^{-n}) = \psi_n(z) + o(|z|^{-n})
\]
has already been proved (this is true for \(n = 0 \)) we obtain from
\[
v'(z) = \psi_n'(z) + o(|z|^{-n-1})
\]
and (11)
\[
a(z)z^{-2m} - v^2 = z^{-m}\psi'_n(z) + mz^{-m-1}\psi_n(z) + o(|z|^{-n-m-1}).
\]
The algebraic equation
\[
a(z)z^{-2m} - y^2 = z^{-m}\psi'_n(z) + mz^{-m-1}\psi_n(z)
\]
has a unique solution \(y = 1 + \sum_{k=1}^{\infty} c_k z^{-k} \) about \(z = \infty \), and from \(v + y = 2 + o(1) \)
and \((v - y)(v + y) = v^2 - y^2 = o(|z|^{-n-m-1}) \) it follows that
\[
v = y + o(|z|^{-n-m-1}) = 1 + \sum_{k=1}^{n+1} c_k z^{-k} + o(|z|^{-n-1}) = \psi_{n+1}(z) + o(|z|^{-n-1}).
\]
It is obvious that \(c_k = c'_k \) holds for \(0 \leq k \leq n \), and this proves the existence part.
The proof is the same in all other cases.

To prove the uniqueness part of Theorem 3 we assume that \(w_1 \) and \(w_2 \) have the same asymptotic expansion on the sector \(S \).
Then \(u = w_1 - w_2 \) solves
\[
u' = - (w_1(z) + w_2(z))u = -2\varepsilon z^{n/2}(1 + O(|z|^{-\frac{1}{2}}))u,
\]
hence \(u = C \exp(-\frac{2\varepsilon}{\delta}z^\delta + O(|z|^\delta)) \) holds. Our hypothesis \(\varepsilon \text{Re} z^\delta < 0 \) and \(u \to 0 \)
on \(S' \subset S \) then gives \(u = C = 0 \), and this proves Theorem 3 completely.

9. Proof of Theorem 5

Since all but finitely many poles of \(w \) are simple with residue 1, the Residue Theorem gives
\[
n(r, w) = \frac{1}{2\pi i} \int_{\Gamma_r} w(z) \, dz + o(1),
\]
where the simple closed curve \(\Gamma_r \) is obtained from the circle \(C_r : |z| = r \) by replacing the intersection of \(C_r \) with any disc \(\Delta_r(p) = \{ z : |z - p| < \epsilon |p|^{-n/2} \} \) \((\epsilon > 0 \) sufficiently small, \(p \) any pole of \(w \)) by an appropriate sub-arc of \(\partial \Delta_r(p) \).
From \(w = O(|z|^{n/2}) = O(|z|^{\delta_m}) \) on \(\Gamma_r \) (this following from the normality of the family \(w_{h_j}(z) = h^{n/2}w(h + h^{-n/2}j) \) and the fact that \(\Gamma_r \cap \{ z : |\arg z - \theta_\nu| < \delta \} \) has length at most \(2\pi \delta r \) as \(\delta \to 0 \), it follows that the contribution of the Stokes sector \(S_\nu \) to the counting function of poles equals
\[
(-1)^\nu \varepsilon_{\nu} \frac{r^\delta}{\pi \delta} + o(r^\delta) \quad (\nu = n/2 + 1).
\]
In particular, \(w \) has \(\sum_{\nu} (-1)^\nu \varepsilon_{\nu} \) strings of poles. Integrating \(w \) along the line segment \(\sigma \) from \(r_0 e^{i(\theta_\nu - \delta)} \) \((\delta > 0 \) small, \(r_0 > 0 \) large \) to \(r e^{i(\theta_\nu + \delta)} \) gives
\[
\frac{1}{2\pi i} \int_{\sigma} w(z) \, dz = \varepsilon_{\nu} \frac{r^\delta}{\pi \delta} e^{i\delta e^{i(\theta_\nu - \delta)}} + o(r^\delta) = (-1)^\nu \varepsilon_{\nu} \frac{r^\delta}{\pi \delta} e^{-i\delta e^{i(\theta_\nu - \delta)}} + o(r^\delta).
\]
Thus, if \(\gamma_{\nu} \) denotes the simple closed curve which consists of the line segment \(\sigma \), the part of \(\Gamma_r \) from \(r e^{i(\theta_\nu - \delta)} \) to \(r e^{i(\theta_\nu + \delta)} \), the line segment from \(r e^{i(\theta_\nu + \delta)} \) to \(r_0 e^{i(\theta_\nu - \delta)} \), and the circular arc on \(|z| = r_0 \) from \(r_0 e^{i(\theta_\nu + \delta)} \) to \(r_0 e^{i(\theta_\nu - \delta)} \) we obtain
\[
\frac{1}{2\pi i} \int_{\gamma_{\nu}} w(z) \, dz = (-1)^\nu \varepsilon_{\nu} \frac{r^\delta}{\pi \delta} [\varepsilon_{\nu} - \varepsilon_{\nu+1}] + O(\delta r^\delta) + o(r^\delta)
\]
(r → ∞, δ → 0). Now the integral on the left hand side equals the number of poles inside γω, while \((-1)^{\nu} \frac{1}{2} [\varepsilon_0 - \varepsilon_{\nu+1}]\) coincides with the number of strings of poles along the Stokes ray s_ρ: arg z = \theta_\nu. From this the assertions (a), (b), and (c) in Theorem 5 immediately follow.

\[\square \]

10. Proof of Theorem 6

It is easily seen that equation (11) resp. (12), written as

\[z^{-q} v' = f(z, v) \quad (q = m \text{ resp. } q = n + 1) \]

has a formal solution \(\varepsilon_\nu + \sum_{\nu=1}^{\infty} c_\nu z^{-\nu} \) with \(\varepsilon_\nu = -(-1)^\nu. \) Since \(\lim_{z \to \infty} f_v(z, \varepsilon_\nu) = -2\varepsilon_\nu \neq 0, \) Theorem 12.1 in Wasow’s monograph [14] applies to the corresponding equation for \(v - \varepsilon_\nu. \) Hence to every sector \(|\arg z - \theta_0| < \frac{\pi}{2} \) there exists a solution to equation (14) with asymptotic expansion \(v \sim \varepsilon_\nu + \sum_{\nu=1}^{\infty} c_\nu z^{-\nu}. \) In particular, for every \(\nu \) we obtain a (unique) solution \(w = w_\nu \) to (R) with the desired asymptotic expansion (9) on the Stokes sector \(S_\nu. \)

\[\square \]

11. Proof of Theorem 7

If \(y(z) = P_1(z) \) has only finitely many zeros, then \(n = 2 \deg P_2 - 2 \) is even, and not much more can be said (of course, \(P \) can be computed explicitly from \(P_1 \) and \(P_2 \)). From now on we assume that \(y \) has infinitely many zeros. The change of variables \(w(z) = \frac{\eta y(\eta z)}{y(\eta z)} \) with \(\eta^{n+2} a_n = 1 \) transforms equation (10) into equation (R) with \(a(z) = \eta^{2} P(\eta z) = z^n + \cdots, \) hence the question whether or not there are solutions \(y \) to (10) having infinitely many zeros, ‘most’ of them close to the real axis is transformed into the question for solutions \(w \) to (R) having just one string of poles asymptotic to some Stokes ray \(s_\nu: \arg z = \theta_\nu \) if \(n \) is odd, and asymptotic to the Stokes rays \(s_\nu \) and \(s_{\nu+1} \) if \(n = 2m \) is even, respectively. This yields \(\eta = e^{i\nu} \) up to an arbitrary root of unity of order \(n + 2, \) and we are free to choose \(\eta = e^{-i\nu} \) if \(n \) is even, and \(\eta = \pm 1 \) if \(n = m + 1 \) if \(n = 2m + 1 \) is odd. In the first case we obtain \(a_n = -1, \) and from Theorem 5 it follows that \(\epsilon_0 - \epsilon_1 = 2 \) and \((-1)^{m+1}(\epsilon_{m+1} - \epsilon_{m+2}) = 2, \) hence \(\epsilon_0 = 1 \) and \(\epsilon_1 = -1, \) this implying \(\epsilon_2 = \cdots = \epsilon_{m+1} = \epsilon_1 = -1, \epsilon_{m+2} = \cdots = \epsilon_{2m+1} = \epsilon_0 = 1, \) \(m = 2k \) and \(n = 4k. \) This proves the first part of Theorem 6.

In the second case we have \(a_n = +1 \) and \(a_n = -1 \) with zeros asymptotic to the negative and positive real axis, respectively, and asymptotic expansions \(y'/y \approx (-1)^{m+1} z^{-n/2} \) on \(|\arg z| < \pi \) resp. \(y'/y \approx (-1)^{m+1} (-z)^{-n/2} \) on \(|\arg(-z)| < \pi \) (note that \(z^{-n/2} \) means \((\sqrt{z})^n). \)

Now \(y \) is uniquely determined up to a constant factor. Thus if \(P \) is a real polynomial, then the zeros of \(y^*(z) = y(\overline{z}) \) are also asymptotic to the real axis, hence \(y \) and \(y^* \) are linearly dependent, and \(y \) is a multiple of a real function with all but finitely many zeros real.

\[\square \]

References

Complex Riccati differential equations revisited

Received 30 January 2013 • Accepted 20 December 2013