The Formula of Riemann-Hurwitz and Iteration of Rational Functions

Norbert Steinmetz

Fachbereich Mathematik
Universität Dortmund
Postfach 50 05 00
4600 Dortmund 50

Abstract
An elementary proof of the Riemann-Hurwitz Formula for plane domains is given, avoiding the concept of Euler-characteristic.

MOS-Classification: 30F10

1 Introduction

The formula of Riemann-Hurwitz (see [1] or [5]) plays an important role in iteration theory of rational functions, perhaps the most important one besides Montel’s normality criterion. It is a relation between the Euler-characteristics of two compact Riemann surfaces and two integers associated with a proper analytic map \(f : V \to W \).

However, the Euler-characteristic is, even in the case of a spherical domain, (which is, with its natural one-point-compactification, a compact Riemann surface), a rather complicated concept, and in iteration theory the Riemann-Hurwitz-formula is always applied either to compute some connectivity numbers from given data (see [3]) or else to prove the existence of critical points. Thus it is desirable to have a proof of the Riemann-Hurwitz-formula avoiding the concept of Euler-characteristic. Since the Euler-characteristic of a domain \(V \) of connectivity \(n \) is \(2 - n \), the Riemann-Hurwitz-formula may be stated as follows:

Riemann-Hurwitz-Formula: Let \(V \) and \(W \) be domains on the Riemann sphere of finite connectivity \(m \) and \(n \), respectively, and let \(f : V \to W \) be a \(k \)-sheeted (ramified) proper map having \(r \) critical points (counted by multiplicity). Then

\[
m - 2 = k(n - 2) + r. \tag{RH}
\]
Here, as usual, proper map means that preimages of compact subsets of W are compact. Then f assumes every value exactly k-times, for some finite integer k.

2 The Main Lemma

The proof of (RH) will be based on the following

Lemma: Let V be a domain of connectivity m, which is divided by k cross-cuts c_1, \ldots, c_k (disjoint in V) into l domains V_1, \ldots, V_l, of connectivity m_1, \ldots, m_l, respectively. Then

$$\sum_{j=1}^{l} (m_j - 2) = m - 2 - k.$$ \hfill (*)

Remark: A cross-cut c is a Jordan arc lying in V except for its end points, which belong to ∂V. It is well known (see [4]) that either $V \setminus c$ is a domain of connectivity $m - 1$ or else consists of two domains V^* and V^{**} of connectivity m^* and m^{**}, respectively, such that $m^* + m^{**} = m + 1$.

Proof of eq. (*) We proceed by induction. The fundamental property of a cross-cut mentioned above settles the case $k = 1$.

For $k > 1$ we first assume that $V \setminus c_1$, say, is not a domain. Then it consists of domains V^* and V^{**} of connectivity m^* and m^{**}, respectively, which are divided by k^* and k^{**} cross-cuts, $k^* + k^{**} = k - 1$, into domains V_1, \ldots, V_l and V_{l+1}, \ldots, V_l. Thus (*) applies and gives

$$\sum_{j=1}^{l} (m_j - 2) = m^* - 2 - k^*$$

and

$$\sum_{j=l+1}^{l} (m_j - 2) = m^{**} - 2 - k^{**}.$$

Adding up gives the desired result.

If, however, $V \setminus c_1$ is a domain, then it is $(m - 1)$ ply connected and is divided by c_2, \ldots, c_k into the domains V_2, \ldots, V_m, thus

$$\sum_{j=1}^{l} (m_j - 2) = (m - 1) - 2 - (k - 1) = m - 2 - k.$$

This completes the proof of the lemma.

1This is an old result, which has recently been rediscovered for several times.
3 Proof of the Riemann-Hurwitz-formula

First, by applying the Riemann-mapping-theorem \(m \) and \(n \) times, respectively, we map the domains \(V \) and \(W \) conformally onto domains \(V^* \) and \(W^* \) which are bounded by analytic Jordan curves and/or singletons. Thus \(f \) induces a \(k \)-sheeted proper map \(f^* : V^* \rightarrow W^* \) which is analytic in \(V^* \). Writing \((f, V, W) \) instead of \((f^*, V^*, W^*) \), we may assume that this situation holds a priori.

We will first discuss the case where \(f \) is unramified. Then any local branch of \(f^{-1} \) may be continued along any curve in \(W \). If \(W \) is simply connected, then, by the monodromy theorem, \(f^{-1} \) is single-valued in \(W \) and thus is a conformal mapping. This proves that \(n = 1 \) (and \(r = 0 \)) implies \(m = k = 1 \) and so (RH). We proceed by induction. In case \(m > 1 \), we take a cross-cut \(c \) in \(W \), which diminishes the connectivity number: \(W^* = W \setminus c \) is \((m - 1) \)-connected. Since \(c \) lifts to \(k \) cross-cut in \(V \), we get \(m_1 = m - 1 \) and \(k_1 = k \). Adding up the Riemann-Hurwitz-formulae

\[m_j - 2 = k_j((m - 1) - 2), \]

and using (*) we get the desired result. Thus the proof is complete.

If \(f \) is ramified, it has finitely many critical values \(w_1, \ldots, w_s \in W \). Then \(W^* = W \setminus \{w_1, \ldots, w_s\} \) has connectivity \(n + s \), and it is easily seen that \(V^* = f(W^*) \) has connectivity \(m + ks - r \); any \(w_j \) has \(p_j \) preimages with multiplicities \(q_j^\nu \) such that

\[\sum_{\nu=1}^{p_j} q_j^\nu = k, \text{ and } \sum_{j=1}^{s} \sum_{\nu=1}^{p_j} (q_j^\nu - 1) = r, \text{ thus } \sum_{j=1}^{s} p_j = sk - r. \]

Since \(f : V^* \rightarrow W^* \) is \(k \)-sheeted and unramified,

\[m + ks - r - 2 = k(m + s - 2) \]

and so (RH) holds true also in this case. This completes the proof.

4 A Result of Mueller and Rudin

In a recent paper, Mueller and Rudin [3] considered the group \(\text{PRH}(V) \) of proper self-maps of a domain \(V \) of finite connectivity \(m > 2 \). It is clear that this group either must be infinite or else consists only of conformal maps. The Riemann-Hurwitz-formula now gives \(m - 2 = k(m - 2) + r \) and so, since \(m > 2 \), \(k = 1 \) and \(r = 0 \), thus any such map is conformal, and since any conformal self-map induces a permutation of the boundary components, it has to be shown that

\[^2 \text{This is also true if } n = 0, \text{ i.e. if } W = \hat{\mathbb{C}}. \text{ Then } f^{-1} \text{ is a Möbius transform and so } V = \hat{\mathbb{C}}; m = 0 \text{ and } k = 1. \]
different conformal self-maps induce different permutations. This can be done by considering a circular slits region, as is done in [3]. We are interested in the set $PRH(V, W)$ of proper maps of some domain V onto some domain W, where V and W have finite connectivity m and n, respectively. We will only discuss the nondegenerate case, where none of the boundary components is a singletons, and will consider first some special cases:

(a) $m = 1$: Then also $n = 1$ and $PRH(V, W)$ is essentially the set of finite BLASCHKE products.

(b) $m = n = 2$: Then V and W are conformally equivalent to annuli

$$\mathcal{A}_r = \{ z : r < |z| < 1 \}$$

and \mathcal{A}_R, and $PRH(\mathcal{A}_r, \mathcal{A}_R)$ is empty if $R \neq r^k$ for any positive integer, and otherwise consists of the mappings $z \mapsto e^{i\alpha}z^k$ and $z \mapsto re^{i\alpha}/z^k$.

(c) $m \geq 2$ and $n = 2$: In this case, $PRH(V, W)$ in general is infinite. To prove this we consider a BLASCHKE product f of degree m having distinct zeros, and let W be the unit disk from which a small disk $|w| \leq \varepsilon$ is removed. Then $e^{i\alpha}f$ is a m-sheeted proper map of $V = f^{-1}(W)$ onto W.

(d) $m = 2$ and $n = 1$: Here, too, $PRH(V, W)$ in general is infinite. For a proof consider the JOUKOWSKY function $f(z) = z + 1/z$. Then f is a proper $2 : 1$ - map of the annulus $\mathcal{A} = \{ z : r < |z| < 1/r \}$ onto the interior \mathcal{E} of an ellipse, and if \mathcal{E} is mapped conformally onto the unit disk (by ϕ, say), then $e^{i\alpha}\phi \circ f$ is a $2 : 1$ - map of \mathcal{A} onto the unit disk.

By considering circular slits regions, it is easy to prove that

if $n > 2$, then $PRH(V, W)$ is finite.

Remark: It would be interesting to study the cases $m > n = 1$ and $m > n = 2$ in more detail, and also to give a nontrivial upper bound if $m \geq n > 2$.

References

