Sub-hyperbolic Rational Maps
And Algebraic Differential Equations

Norbert Steinmetz
Fachbereich Mathematik
Universität Dortmund
D–44221 Dortmund
e-mail stein@math.uni-dortmund.de

Dedicated to the memory of Professor Chi-Tai Chuang

Abstract We give a new existence proof for a singular metric on a marked planar domain via first-order algebraic differential equations. This singular metric applies in complex dynamics to sub-hyperbolic rational functions.

Keywords: Algebraic differential equation, sub-hyperbolic, complex dynamics

AMS Classification: 30D05, 34A20 $R^n\#$ oder $(R^n)\#$ oder $R^n\# R^n#$

§ 1—Sub-hyperbolic rational maps—Let R be a rational function on the Riemann sphere with $\deg R > 1$. Then R is called hyperbolic if there exists some smooth metric $\varrho(w)\,|dw|$ on a neighbourhood of the Julia set $\mathcal{J} = \mathcal{J}_R$, such that R is expanding on \mathcal{J} with respect to that metric,

$$\frac{\varrho(R(z))\,|R'(z)|}{\varrho(z)} > 1$$

on \mathcal{J}. (1)

If ϱ is allowed to have finitely many singularities a_1, a_2, \ldots, a_r such that

$$\varrho(w) = O(\left| w - a_j \right|^{-\gamma_j}) \quad \text{as} \quad w \to a_j,$$

for some $\gamma_j < 1$, then R is called sub-hyperbolic. It is well-known that sub-hyperbolicity is equivalent with the following: R has no parabolic orbits, and each critical point on the Julia set \mathcal{J} is eventually periodic, see [2], p. 92. The crucial part in the proof is to show that the latter condition implies (1) and
(2). This can be achieved by proving the following

Theorem Let \(D \subseteq \mathcal{U} \) be a domain and let \(\nu : D \to \mathbb{N} \) be a map such that \(\nu(a_j) = l_j > 1, 1 \leq j \leq p, \) and \(\nu(w) = 1 \) elsewhere. Then, with the exceptions \(D = \mathcal{U}, \ p = 2, \ l_1 = l_2 = 2 \) and \(D = \mathcal{U}, \ p = 1, \) there exists a branched covering map \(\Phi : \mathbb{D} \to D \) such that the local degree of \(\Phi \) satisfies

\[
\text{deg}_z \Phi = \nu(\Phi(z)) .
\]

Then the Poincaré metric of the unit disk will be carried over to \(D \) in the same manner as in the hyperbolic (non-branched) case:

\[
g(w)|dw| = \frac{2|dz|}{1 - |z|^2}, \quad w = \Phi(z) .
\]

By uniqueness of \(\Phi \) (if \(\Phi_1 \) is any other branched covering map, then \(\Phi_1 = \Phi \circ T \) with some Möbius transform \(T : \mathbb{D} \to \mathbb{D} \), a so-called deck transform) it is easy to see that \(g \) is well-defined, it satisfies (2) with \(\gamma_j = 1 - 1/l_j \).

Now suppose that \(\Phi : \mathbb{D} \to D \) is some branched covering map satisfying (3). Then, if we set

\[
m = \text{lcm}\{l_1, \ldots, l_p\} \quad \text{and} \quad m_j = m(1 - 1/l_j),
\]

it is easily seen that

\[
q(z) = \frac{(\Phi'(z))^m}{\prod_{j=1}^{p} (\Phi(z) - a_j)^{m_j}}
\]

is a zero-free holomorphic function in the unit disk \(\mathbb{D} \), and hence \(\Phi \) is a solution of the differential equation

\[
\Phi'^m = q(z) \prod_{j=1}^{p} (\Phi - a_j)^{m_j} .
\]

§ 2—Algebraic differential equations—The problem of determining \(\Phi \) is divided into two steps. First we consider the universal algebraic differential equation

\[
w'^m = P(w) := \prod_{j=1}^{p} (w - a_j)^{m_j}
\]

in \(\mathcal{U} \), and then take into account the domain \(D \) to determine the coefficient \(q(z) \).

2
Local solutions For every \(a \neq a_1, \ldots, a_p \), the initial value problem (5), \(w(z_0) = a \), has exactly \(m \) distinct local solutions \(w, w_1, \ldots, w_{m-1} \) satisfying \(w_j(z) = w(z_0 + \varepsilon_j(z - z_0)) \) with \(\varepsilon_j = e^{2\pi j/m} \).

Proof Take any analytic \(m \)-th root of \(w \mapsto P(w) \) in some neighbourhood of \(w = a \). Then Picard’s Existence and Uniqueness Theorem yields a unique analytic solution \(z \mapsto w(z) \) in some neighbourhood of \(z = z_0 \). The second statement is obvious, just note that \(w_j'(z_0) = \varepsilon_j w'(z_0) \).

Analytic continuation Each local solution admits unrestricted analytic continuation to the whole plane \(\mathbb{C} \), except for (algebraic) poles.

Proof By Painlevé’s theorem, see Bieberbach [1], p. 10, every local solution of (5) admits unrestricted analytic continuation except for algebraic singularities (and, of course, poles). If some solution \(w \) is continued along an arc \(t \mapsto z_t, 0 \leq t < 1 \) and \(z_1 \) is an algebraic singularity (not a pole), then \(\lim_{t \to 1^-} w(z_t) = a_j \) for some \(j \). Substituting \(w - a_j = y^j \), we obtain the algebraic differential equation

\[
y'^m = l_j^{-m} \prod_{k \neq j} (y^j + a_j - a_k)^{m_k},
\]

for which \(y = 0 \) is a regular point. It is obvious that, for some appropriate local solution \(z \mapsto y(z) \) of the initial value problem (6), \(y(z_1) = 0 \), the map \(z \mapsto a_j + y^j(z) \) provides the analytic continuation of \(w \) into a neighbourhood of \(z_1 \). Note that \(z_1 \) is a zero of \(w(z) - a_j \) of order \(l_j \), since \(y(z_1) \neq 0 \).

Inverse analytic continuation Let \(w \) be any non-constant local solutions of (5), \(w(z_0) \neq a_j \). Then \(w \) has a local inverse

\[
Z = Z(w) = Z_0 + \int_{w(z_0)}^w P^{-1/m}(\xi)d\xi,
\]

which obviously admits unrestricted analytic continuation to \(\mathbb{C} \setminus \{a_1, \ldots, a_p\} \).

At \(w = a_j \), \(w \mapsto Z \) has an algebraic singularity.

Proof Obviously all one has to do is to continue some branch of \(P^{1/m} \) analytically along a given arc \(\gamma \) starting at \(w(z_0) \) and avoiding the set \(\{a_1, \ldots, a_p\} \). At \(w = a_j \), \(w \mapsto Z \) has an algebraic singularity of type

\[
Z(w) \sim z_1 + \text{const} \cdot (w - a_j)^{-1/l_j}.
\]
Poles Suppose \(\mu = \sum_{j=1}^{p} m_j > m \). Then every non-constant solution of (5) has infinitely many (possibly algebraic) poles. For \(\mu = m \) every solution is a transcendental entire function, while, for \(\mu < m \), every solution is algebraic.

Proof Let \(w \) be any non-constant solution of (5) with \(w(0) = a \in \Phi \), and assume \(\sum_{j=1}^{p} m_j > m \). Then \(w \) cannot be entire (see, e.g., Wittich [4]) and so has a pole \(z_0 = z_0(a) \) of smallest modulus \(R(a) \); note that \(R(a) \) does not depend on the choice of \(\arg w'(0) \). It is obvious that \(a \mapsto R(a) \) is continuous, this following from analytic dependence, and, for \(|a| \) sufficiently large we have
\[
R(a) \leq |a|^{-\mu/m} \int_{1}^{\infty} \prod_{j=1}^{p} \left(t - \left| \frac{a_j}{a} \right| \right)^{-1+\frac{1}{q}} dt,
\]
which tends to 0 as \(a \to \infty \). Thus \(R(a) \) has a maximum \(P \), and so, given \(z_0 \) and \(w(z_0) = w_0 \), every non-constant solution of (5) has a (algebraic) pole on \(|z - z_0| \leq P \). This shows that there are infinitely many poles.

The inequality \(\sum_{j=1}^{p} m_j \leq m \) is equivalent with \(\sum_{j=1}^{p} 1/l_j \geq p - 1 \), and since each \(l_j \) is at least two, this implies \(p \leq 2 \). In case \(p = 2 \) we have \(w'^2 = (w-a_1)(w-a_2) \), this is essentially the cosine-equation, while in case \(p = 1 \) we have \(w'^m = w^{m-q} \), \(m/q = l_1 \). The solutions of this equation are \(w = \left(l_1^{-1} z + c \right)^{l_1} \).

Remark In the same way it can be shown that every non-constant solution assumes every value \(\neq a_j \) infinitely often, provided \(\mu > m \), thus \(w(z_1) = w(z_2) = \ldots = a \). It is obvious that there exist indices \(j, k \) with \(w'(z_j) = w'(z_k) \), and so \(w(z) = w(z + z_j - z_k) \) by uniqueness: (analytic continuation of) any non-constant solution is periodic.

§ 3—Branched uniformization—We assume in the sequel \(\sum_{j=1}^{p} 1/l_j < p - 1 \). Let \(D \subseteq \Phi \) be any domain with marked points \(a_1, \ldots, a_p \). Suppose that \(a \) is any point in \(D \setminus \{ a_1, \ldots, a_p \} \) and that \(z \mapsto w(z) \) is any local solution of (5), \(w(0) = a \). Then we obtain a domain \(H \), which consists of all values obtained by analytic continuation of the local inverse \(w \mapsto Z \), \(a \mapsto 0 \), in \(D \setminus \{ a_1, \ldots, a_p \} \), together with all limits of \(Z(w) \) as \(w \) tends to some \(a_j \), \(1 \leq j \leq p \). The domain \(H \) is hyperbolic, since it does not contain any of the infinitely many poles of \(w \).

Hence there exists a unique universal covering map \(\psi : \mathbb{D} \to H \), normalized by \(\psi(0) = 0 \) and \(\arg \psi'(0) = -\arg w'(0) \). Then \(\Phi = w \circ \psi \) is locally defined at \(z = 0 \) and admits unrestricted analytic continuation in \(\mathbb{D} \). Hence \(\Phi \) is analytic.
in \mathbb{ID} by the Monodromy Theorem, and is indeed a branched covering map $\mathbb{ID} \longrightarrow D$ satisfying (3). Finally, the Schwarz Lemma shows that Φ is uniquely determined by the condition $\Phi(0) = a$, $\Phi'(0) > 0$.

§ 4—Summary—By our method the problem of constructing a branched covering map $\Phi : \mathbb{ID} \rightarrow D$, and so of constructing a singular metric $\varrho(w) |dw|$ is broken into two parts: Φ is a composition of a (non-branched) universal covering map $\psi : \mathbb{ID} \longrightarrow H$ and a branched covering map $H \rightarrow D$, defined by (continuation of) a solution of (5). This branched map is universal insofar it does not take into account the special shape of the domain D, but only the map $\nu : D \longrightarrow \mathbb{N}$. On the other hand, ψ takes into account the domain H only. And so is the construction of ϱ: Since the Poincaré density of H at $\zeta = \psi(z)$ is given by $\varrho_H(\zeta) |\psi'(z)| = 2(1 - |z|^p)^{-1}$, and since $|\Phi'(z)| = |\psi'(z)| \prod_{j=1}^{p} |w - a_j|^{-\frac{1}{\beta_j}}$, we obtain

$$\varrho(w) = \frac{\delta(w)}{\prod_{j=1}^{p} |w - a_j|^{-\frac{1}{\beta_j}}} ,$$

where $\delta(w) = \varrho_H(\psi(z))$ is a well-defined and smooth function of w.

Example—$R(w) = w^2 + i$. The postcritical orbit is $\{ i, -1 + i, -i \}$ with $l_1 = l_2 = l_3 = 2$. The differential equation (5) is given by

$$w^2 = (w^2 + 1)(w + 1 - i)$$

and has solutions $w(z) = \varphi(z/2 + e) - (1 + i)/3$. The domain D is a large disk $|z| < R$, H is a component of $w^{-1}(D)$, and with ψ a universal covering map $\mathbb{ID} \longrightarrow H$ and $\delta(w) = \varrho_H(\psi(z))$ we have $\varrho(w) = \delta(w)\left(|w^2 + 1|(w + 1 - i)\right)^{-\frac{1}{2}}$. In [2] the equivalent density $\varrho^*(w) = \left(|w^2 + 1|(w + 1 - i)\right)^{-\frac{1}{2}}$—a good guess—is constructed 'by hand'.

References