Particulate Flow Simulations with Complex Geometries using the Finite Element-Fictitious Boundary Method

Raphael Münster, Otto Mierka, Stefan Turek
Institut für Angewandte Mathematik, TU Dortmund
Related Multiphase Flow Solver

Basic CFD tool – **FeatFlow**
(robust, parallel, efficient)

HPC features:
- Massively parallel
- GPU computing
- Open source

Non-Newtonian flow module:
- Generalized Newtonian model (Power-law, Carreau, ... etc.)
- Viscoelastic model (Giesekus, Oldroyd B, ... etc.)

Multiphase flow module (resolved interfaces):
- l/l – interface tracking (Level Set)
- s/l – interface capturing (FBM)
- s/l/l – combination of l/l and s/l

Numerical features:
- Higher order Q2P1 FEM schemes
- FCT & EO FEM stabilization techniques
- Use of unstructured meshes
- **Fictitious Boundary (FBM) methods**
- Dynamic adaptive grid deformation
- Newton-Multigrid solvers

Engineering aspects:
- Geometrical design
- Modulation strategy
- Optimization

FEM-based simulation tools for the accurate prediction of multiphase flow problems, particularly with liquid-(rigid) solid interfaces
Consider the flow of N solid particles in a fluid with density \(\rho \) and viscosity \(\mu \). Denote by \(\Omega_f(t) \) the domain occupied by the fluid at time \(t \), by \(\Omega_i(t) \) the domain occupied by the ith-particle at time \(t \) and let \(\Omega = \Omega_f \cup \Omega_i \).

The fluid flow is modelled by the **Navier-Stokes equations**:\[
\rho \left(\frac{\partial u}{\partial t} + u \cdot \nabla u \right) - \nabla \cdot \sigma = f, \quad \nabla \cdot u = 0
\]

where \(\sigma \) is the total stress tensor of the fluid phase: \[
\sigma(X, t) = -p I + \mu [\nabla u + (\nabla u)^T]
\]
Hierarchical unstructured meshes

Domain decomposition:
 → Grid hierarchy on each subdomain

Mapping from spatial coordinates to mesh cells (indices) generally not possible for unstructured meshes

Overlay an additional structured grid layer (hashed uniform grids) to obtain position to mesh cell mapping

Direct mapping from positions crucial for fast computations involving the mesh or the geometry represented by the mesh

\[f : p(x, y, z) \rightarrow \text{cellIndex} \]
Numerical Solution Scheme

Solve for velocity and pressure applying FBM-conditions
\[\text{NSE}(u_{f}^{n+1}, p_{f}^{n+1}) = \text{BC}(\Omega_{i}^{n}, u_{i}^{n}) \]

Calculate hydrodynamic force, torque and apply
\[F_{i}^{n+1}, T_{i}^{n+1} \]

Contact force calculation
\[F_{c,i}^{n+1} \]

Compute new velocity and angular velocity
\[u_{i}^{n+1} = u_{i}^{n} + \Delta t(F_{c,i}^{n+1}/M_{i}) \quad \omega_{i}^{n+1} = \omega_{i}^{n} + \Delta t I^{-1}_{i}(r \times F_{c,i}) \]

Position update
\[X_{i}^{n+1} = X_{i}^{n} + \Delta t u_{i}^{n} \quad \theta_{i}^{n+1} = \theta_{i}^{n} + \Delta t \omega_{i}^{n} \]
The motion of particles can be described by the **Newton-Euler equations**. A particle moves with a **translational velocity** \(U_i \) and **angular velocity** \(\omega_i \) which satisfy:

\[
M_i \frac{dU_i}{dt} = F_i + F_i' + (\Delta M_i)g, \quad I_i \frac{d\omega_i}{dt} + \omega_i \times (I_i \omega_i) = T_i,
\]

- \(M_i \) : mass of the i-th particle (i=1,...,N)
- \(I_i \) : moment of inertia tensor of the i-th particle
- \(\Delta M_i \) : mass difference between \(M_i \) and the mass of the fluid
- \(F_i \) : hydrodynamic force acting on the i-th particle
- \(T_i \) : hydrodynamic torque acting on the i-th particle
The position and orientation of the i-th particle are obtained by integrating the kinematic equations:

\[
\frac{dX_i}{dt} = U_i, \quad \frac{d\theta_i}{dt} = \omega_i, \quad \frac{d\omega_i}{dt} = I_i^{-1}T_i
\]

which can be done numerically by an explicit Euler scheme:

\[
X_i^{n+1} = X_i^n + \Delta t U_i^n \quad \omega_i^{n+1} = \omega_i^n + \Delta t (I_i^{-1}T_i^n) \quad \theta_i^{n+1} = \theta_i^n + \Delta t \omega_i^n
\]

Boundary Conditions

We apply the velocity \(u(X) \) as no-slip boundary condition at the interface \(\partial \Omega_i \) between the i-th particle and the fluid, which for \(X \in \Omega_i \) is defined by:

\[
u(X) = U_i + \omega_i \times (X - X_i)
\]
Hydrodynamic Forces

Hydrodynamic force and torque acting on the i-th particle

\[F_i = -\int_{\partial \Omega_i} \sigma \cdot n_i d\Gamma_i, \quad T_i = -\int_{\partial \Omega_i} (x - x_i) \times (\sigma \cdot n_i) d\Gamma_i \]

Force Calculation with Fictitious Boundary Method

The FBM can only decide:
- `INSIDE`(1) and `OUTSIDE`(0)
- Only first order accuracy

Alternative:
Replace the surface integral by a volume integral
Define an *indicator function* \(\alpha_i \):

\[
\alpha_i(x) = \begin{cases}
1 & \text{for } x \in \Omega_i \\
0 & \text{for } x \in \Omega_f
\end{cases}
\]

Remark: The gradient of \(\alpha_i \) is zero everywhere except at the surface of the \(i \)-th Particle and approximates the normal vector (in a weak sense), allowing us to write:

\[
F_i = - \int_{\Omega_T} \sigma \cdot \nabla \alpha_i \, d\Omega, \quad T_i = - \int_{\Omega_T} (x - x_i) \times (\sigma \cdot \nabla \alpha_i) \, d\Omega
\]

On the finite element level we can compute this by:

\[
F_i = - \sum_{T \in T_{h,i}} \int_{\Omega_T} \sigma_h \cdot \nabla \alpha_{h,i} \, d\Omega \\
T_i = - \sum_{T \in T_{h,i}} \int_{\Omega_T} (x - x_i) \times (\sigma_h \cdot \nabla \alpha_{h,i}) \, d\Omega
\]

\(\alpha_{h,i}(x) \): finite element interpolant of \(\alpha(x) \)

\(T_{h,i} \): elements intersected by \(i \)-th particle
Advantages:

- Constant mesh/data structure → GPU
- Increased resolution in regions of interest
- PDE approach is not necessary → anisotropic ‘umbrella’ smoother
- Straightforward usage in 3D unstructured meshes

Quality of the method depends on the construction of the monitor function:

- Geometrical description (solid body, interface triangulation)
- Monitor function based on distance information
- Field oriented description (steep gradients, fronts) → numerical stabilization

Validation: 2.5D Rising bubble – light setup

Testing: 3D Rising bubble - hard setup
Contact Force Calculation

• Contact force calculation realized as a three step process
 → Broadphase
 → Narrowphase
 → Contact/Collision force calculation

• Worst case complexity for collision detection is $O(n^2)$
 → Computing contact information is expensive
 → Reduce number of expensive tests → Broad Phase

• Broad phase
 → Simple rejection tests exclude pairs that cannot intersect
 → Use hierarchical spatial partitioning

• Narrow phase
 → Uses Broadphase output
 → Calculates data neccessary for collision force calculation

► Special single, resp., multibody collision models (as linear complementarity problems) on GPUs
Free fall of particles:
- Terminal velocity
- Different physical parameters
- Different geometrical parameters

Münster, R.; Mierka, O.; Turek, S.: Finite Element fictitious boundary methods (FEM-FBM) for 3D particulate flow, IJNMF, 2011

Source: Glowinski et al. 2001
Setup
Computational mesh:
• 1,075,200 vertices
• 622,592 hexahedral cells
• Q2/P1:
 → 50,429,952 DoFs

Hardware Resources:
• 32 Processors

<table>
<thead>
<tr>
<th>Re</th>
<th>u_{max}/u_∞ (ten Cate)</th>
<th>u_{max}/u_∞ (exp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>0.945</td>
<td>0.894</td>
</tr>
<tr>
<td>4.1</td>
<td>0.955</td>
<td>0.950</td>
</tr>
<tr>
<td>11.6</td>
<td>0.953</td>
<td>0.955</td>
</tr>
<tr>
<td>31.9</td>
<td>0.951</td>
<td>0.947</td>
</tr>
</tbody>
</table>

Tab. 1 Comparison of the u_{max}/u_∞ ratios between the FEM-FBM, ten Cate's simulation and ten Cate's experiment
Comparison of FEM-FBM and the experimental values and the LBM results of the group of Sommerfeld

Source: 13th Workshop on Two-Phase Flow Predictions 2012
Acknowledgements: Ernst, M., Dietzel, M., Sommerfeld, M.
FEM-Multgrid Framework

- Increasing the mesh resolution produces more accurate results
 Test performed at different mesh levels
 - Maximum velocity is approximated better ✓
 - Shape of the velocity curve matches better ✓
Oscillating Cylinder

- Measure Drag/Lift Coefficients for a sinusoidally oscillating cylinder
- Compare results for FBM, adapted FBM and adapted FBM + boundary projection/parametrization

Nodes concentrated near liquid-solid interface

Nodes projected and parametrized on boundary plus concentration of nodes near boundary
Oscillating Cylinder Results

- Highly smooth results when the vertices are projected directly onto the geometry ✅
Distance Maps for Fast MinDist

- Data structure for fast distance calculation
- Equidistant structured mesh surrounding the object
- Precompute and store distance, normals
- Transform quantities into distance map, use precomputed values
- Algorithm maps excellently to the GPU
- Provides fast distance computation and collision queries for complex geometries
Influence of Mesh Adaptation

Car representation by the computation mesh

- Details may be lost without adaptation
- Better resolution with the same number of DOFs
- Mesh adaptation equivalent to at least one refinement level
Example: Virtual Wind Tunnel

- Numerical simulation of complex geometries
- Use of a regular base mesh
- Resolution of small scale details by mesh adaptation

Streamline visualization of the flow field around a car

Mesh Slices with and without adaptation
Microswimmer Example

Swimming by Reciprocal Motion at Low Reynolds Number

Tian Qiu, Tung-Chun Lee, Andrew G. Mark, Konstantin I. Morozov, Raphael Münster, Otto Mierka, Stefan Turek, Alexander M. Leshansky and Peer Fischer

Nature Communications, November 2014
Microswimmer Example(II)

Application to microswimmers:

- Exp: Cooperation with Prof. Fischer (MPI IS Stuttgart)
- Analysis with respect to shear thickening/thinning
- Use of grid deformation to resolve s/l interface
Contact/Collision Modelling

- Contact determination for rigid bodies A and B:
 - Distance $d(A,B)$
 - Relative velocity $v_{AB} = (v_A + \omega_A \times r_A) - (v_B + \omega_B \times r_B)$
 - Collision normal $N = (X_A(t) - X_B(t))$
 - Relative normal velocity $N \cdot (v_A + \omega_A \times r_A - (v_B + \omega_B \times r_B))$
- Distinguishes three cases of how bodies move relative to each other:
 - Colliding contact : $N \cdot v_{AB} < 0$
 - Separation : $N \cdot v_{AB} > 0$
 - Touching contact : $N \cdot v_{AB} = 0$
For a single pair of colliding bodies we compute the impulse \(f \) that causes the velocities of the bodies to change:

\[
f = - \frac{(1+\varepsilon)(n_1(v_1 - v_2) + \omega_1(r_{11} \times n_1) - \omega_2(r_{12} \times n_1))}{m_1^{-1} + m_2^{-1} + (r_{11} \times n_1)^T l_1^{-1}(r_{11} \times n_1) + (r_{12} \times n_1)^T l_2^{-1}(r_{12} \times n_1)}
\]

Using the impulse \(f \), the change in linear and angular velocity can be calculated:

\[
v_1(t + \Delta t) = v_1(t) + \frac{fn_1}{m_1}, \quad \omega_1(t + \Delta t) = \omega_1(t) + l_1^{-1}(r_{11} \times fn_1)
\]

\[
v_2(t + \Delta t) = v_2(t) - \frac{fn_1}{m_2}, \quad \omega_2(t + \Delta t) = \omega_2(t) - l_2^{-1}(r_{12} \times fn_1)
\]
In the case of multiple colliding bodies with K contact points the impulses influence each other. Hence, they are combined into a system of equations that involves the following matrices and vectors:

- N: matrix of contact normals
- C: matrix of contact conditions
- M: rigid body mass matrix
- f: vector of contact forces ($f_i \geq 0$)
- f^{ext}: vector of external forces (gravity, etc.)

\[
\frac{N^T C^T M^{-1} C N}{A} \cdot \Delta t \frac{f^t + \Delta t}{x} + \frac{N^T C^T (u^t + \Delta t M^{-1} + f^{ext})}{b} \geq 0, f \geq 0
\]

A problem of this form is called a linear complementarity problem (LCP) which can be solved with efficient iterative methods like the Projected Gauss-Seidel solver (PGS).

Kenny Erleben, *Stable, Robust, and Versatile Multibody Dynamics Animation*
Sequential Impulses

- Apply pairwise impulses iteratively
- Normal impulse
 \[P_n = \max \left(\frac{-\Delta \overrightarrow{V} \cdot \mathbf{n}}{k_n}, 0 \right) \]
- Tangential (frictional) impulse
 \[\mathbf{v}_t = \Delta \mathbf{v} \cdot \mathbf{t} \]
- Terminate when:
 - Impulses become small
 - Iteration limit is reached
 \[-\mu P_n \leq P_t \leq \mu P_n \]
 \[P_t = \text{clamp} \left(\frac{-\Delta \overrightarrow{V} \cdot \mathbf{t}}{k_t}, -\mu P_n, \mu P_n \right) \]
 \[k_t = \frac{1}{m_1} + \frac{1}{m_2} + \left[I_1^{-1} (\mathbf{r}_1 \times \mathbf{t}) \times \mathbf{r}_1 + I_2^{-1} (\mathbf{r}_2 \times \mathbf{t}) \times \mathbf{r}_2 \right] \cdot \mathbf{t} \]

Details: Guendelman, *Nonconvex rigid bodies with stacking*
Collision forces

- Use a DEM approach that can be easily evaluated in parallel
- Consider only the 3x3x3 neighbouring cells for each particle

Forces acting on each particle

\[F_{i,s} = -k \left(d - \frac{r_{ij}}{|r_{ij}|} \right) \]
\[F_{i,d} = \eta \cdot u_{ij} \]
\[F_{i,t} = k_t \cdot u_{ij,t} \]
\[u_{ij,t} = u_{ij} - \left(u_{ij} \cdot \frac{r_{ij}}{|r_{ij}|} \right) \frac{r_{ij}}{|r_{ij}|} \]

\(k, \eta \): material constants

Sum up for each collision

\[F_{i,c} = \sum_{\text{collisions}(i)} \left(F_{i,s} + F_{i,d} + F_{i,t} \right) \]
\[T_{i,c} = \sum_{\text{collisions}(i)} \left(r_i \times \left(F_{i,s} + F_{i,d} + F_{i,t} \right) \right) \]

- Can be extended to rigid bodies
- Details: GPU Gems 3 (Takahiro Harada)
Examples
Examples
Fluidized Bed Example
DGS Configuration
Extensions & Future Activities

Fluidics

- Viscoelastic fluids
- Turbulence
- Multiphase problems
 - Liquid-Liquid-Solid
 - Liquid-Gas-Solid

Hardware-Oriented Numerics

- Improve parallel efficiency of collision detection and force computation on GPU
- Implement core CFD-Solver Modules on GPU
- Complete dynamic grid adaptation on GPU
- Hydrodynamic forces on GPU